An Introduction to the CKKS Approximate Homomorphic Encryption Scheme

Nathan Manohar

IBM T.J. Watson Research Center

CKKS Approximate HE Scheme (2017)

• Supports arithmetic circuits over real/complex numbers

• Only for approximate arithmetic

Scheme	Circuit Type	Plaintext Type
BGV	Arithmetic	$\operatorname{Mod} p$
BFV	Arithmetic	$\operatorname{Mod} p$
GSW	Boolean	Several Bits
FHEW	Boolean	Several Bits
TFHE	Boolean	Several Bits
CKKS	Arithmetic	Real/Complex

CKKS Approximate HE Scheme (2017)

• Main insight: Treat error as part of approximate computation error

Allows for much more efficient constructions!

Applications

- Machine Learning
- Secure Genome Analysis
 - Big Data Analysis
- Secure Cloud Computing

and many more!

CKKS Overview

- Messages are vectors of up to N/2 complex numbers
- Message space is ring $R = \mathbb{Z}[X]/XN + 1$, for N a power of 2
- Vector of complex numbers encoded via inverse of canonical embedding σ^{-1} : $\mathbb{C}^{N/2}$ R up to some precision
- Ciphertexts are two ring elements in R_{Q_ℓ} for a modulus Q_ℓ and ciphertext level $\ell \leq L$.
- Homomorphic computation is SIMD

CKKS Message Encoding/Decoding

- $\mathbb{Z}[X]/X^N+1$ can be embedded into $\mathbb{C}^{\frac{N}{2}}$ via "canonical embedding"
- Simply means evaluate $m(X) \in \mathbb{Z}[X]/X^N + 1$ at all N primitive 2Nth roots of unity
- In this case, these are $e^{\frac{2\pi i}{2N}*k}$ for k odd
- Embedding has redundancy since k and k are complex conjugates

CKKS Message Encoding

• Vector of N/2 complex numbers expanded to \mathbb{C}^N

Multiply by scaling factor Δ

• Round to image of $\sigma(R)$ and apply σ^{-1}

CKKS Encryption/Decryption

- Notation: $R = \mathbb{Z}[X]/X^N + 1$
- $KeyGen(1^{\lambda})$: Fix N, Q, χ . Sample sparse, ternary $s \in R$.
- $Enc(1^{\lambda}, s, m)$: Sample $a \leftarrow R_Q, e \leftarrow \chi$. Output (a, a * s + e + m).
- Dec(s, ct = (a, b)): Output b a * s.

Can easily be made public-key

Fresh Ciphertext 0 m e

CKKS Encryption/Decryption

• Decryption is $m(X) + e(X) \approx m(X)$

• Since $||\zeta|| = 1$, $||e(\zeta)||$ relatively small

Error introduced in each plaintext slot is small

Homomorphic Addition

- Ciphertexts:
 - $(a, a * s + e + m) = (ct_0, ct_1) \in R_q^2$
 - $(a', a' * s + e' + m') = (ct'_0, ct'_1) \in R_q^2$
- Add both components:
 - (a + a', (a + a') * s + (e + e') + (m + m'))
- Valid encryption of m + m'

Homomorphic Multiplication

- Ciphertexts:
 - $(a, a * s + e + m) = (ct_0, ct_1) \in R_q^2$
 - $(a', a' * s + e' + m') = (ct'_0, ct'_1) \in R_q^2$
- Multiply:
 - $(ct_1 ct_0 * s)(ct'_1 ct'_0 * s) \approx m * m'$
 - $ct_1 * ct'_1 (ct_0 * ct'_1 + ct'_0 * ct_1) * s + (ct_0 * ct'_0) * s^2 \approx m * m'$
 - Ciphertext is 3 elements: $(ct_0 * ct'_0, ct_0 * ct'_1 + ct'_0 * ct_1, ct_1 * ct'_1)$
- Valid encryption of m * m'
- To decrypt, compute s^2 from s

Homomorphic Multiplication

How can we prevent the ciphertext from increasing in size?

Key-Switching

- Convert a 3 element ciphertext to a 2 element ciphertext
- Main idea: Encrypt s^2 under s

•
$$(k_0, k_1) = (a, a * s + e + Ps^2) \in R_{PQ}^2$$

Key-Switching

- Multiplied ciphertext: $(ct_0 * ct_0', ct_0 * ct_1' + ct_0' * ct_1, ct_1 * ct_1')$
 - Decrypts via $ct_1 * ct_1' (ct_0 * ct_1' + ct_0' * ct_1) * s + (ct_0 * ct_0') * s^2 \approx m * m'$
- $(k_0, k_1) = (a, a * s + e + Ps^2) \in R_{PQ}^2$
 - Decrypts via $k_1 k_0 * s \approx Ps^2$
- $ct_1 * ct'_1 (ct_0 * ct'_1 + ct'_0 * ct_1) * s + (ct_0 * ct'_0) * P^{-1}(k_1 k_0 * s) \approx m * m'$
- Gives two element ciphertext: Add $\lfloor (ct_0*ct_0')*P^{-1}k_1 \rfloor$ to ct_1*ct_1' , similarly for other term

Rescaling

- Ciphertext: $(a, a * s + m + e) = (ct_0, ct_1) \in R_Q^2$
- ullet Reduce ciphertext modulus to q and remove noisy LSBs of message
- $\left(\left\lfloor \frac{q}{Q}ct_0 \right\rfloor, \left\lfloor \frac{q}{Q}ct_1 \right\rfloor \right) \in R_q^2$
- Consider δ_0 , δ_1 so that $ct_0+\delta_0$, $ct_1+\delta_1$ divisible by $\frac{Q}{q}$
- Decrypts to $m + e + (\delta_1 \delta_0 * s)$

Rescaling

- Rescaled ct decrypts to $\frac{\mathbf{q}}{\mathbf{Q}} \big(m + e + (\delta_1 \delta_0 * s) \big)$
- $\left(\frac{q}{Q}\right)\delta_0$, $\left(\frac{q}{Q}\right)\delta_1$ both polys with coefficients in $\left(-\frac{1}{2},\frac{1}{2}\right]$
- *s* is sparse and ternary
- Overall rescaling error small

Security

- Ciphertext (a, a * s + m + e), decryption gives m + e
- IND-CPA follows from Ring-LWE
- Doesn't consider public decryptions!
- [LM21] and [LMSS22] show attacks/fixes, introduce IND-CPA-D security

- For N a power of 2, Let ζ_{2N} be a primitive 2Nth root of unity (for example, $\zeta_{2N}=e^{\frac{2\pi i}{2N}}$)
- $\mathbb{Q}(\zeta_{2N})$ is a cyclotomic field
- $\mathbb{Q}(\zeta_{2N}) \cong \mathbb{Q}[X]/(X^N+1)$
- $Gal(\mathbb{Q}(\zeta_{2N})/\mathbb{Q}) \cong \mathbb{Z}_{2N}^* \cong \mathbb{Z}_{\frac{N}{2}} \times \mathbb{Z}_2$

•
$$Gal(\mathbb{Q}(\zeta_{2N})/\mathbb{Q}) \cong \mathbb{Z}_{2N}^* \cong \mathbb{Z}_{\frac{N}{2}} \times \mathbb{Z}_2$$

• \mathbb{Z}_{2N}^* generated by 5 and -1.

• These correspond to the automorphisms $X \to X^5$ and $X \to X^{-1}$

• $R = \mathbb{Z}[X]/(X^N + 1)$ for N a power of 2.

• Decoding by evaluating m(X) at primitive roots

• How should we order these roots?

How should we order these roots?

•
$$\zeta$$
, ζ^5 , ζ^{5^2} , ..., $\zeta^{5^{\frac{N}{2}-1}}$, ζ^{-1} , ζ^{-5} , ζ^{-5^2} , ..., $\zeta^{-5^{\frac{N}{2}-1}}$

• Second half redundant since $\overline{m(\zeta)} = m(\overline{\zeta})$

•
$$m(X) \rightarrow [m(\zeta), m(\zeta^5), ..., m\left(\zeta^{5^{\frac{N}{2}-1}}\right)]$$

•
$$m(X) \rightarrow [m(\zeta), m(\zeta^5), ..., m\left(\zeta^{5\frac{N}{2}-1}\right)]$$

•
$$m(X) \rightarrow [m(\zeta), m(\zeta^5), ..., m\left(\zeta^{5^{\frac{N}{2}-1}}\right)]$$

Apply
$$\zeta \to \zeta^5$$

•
$$m(X) \rightarrow [m(\zeta), m(\zeta^5), ..., m\left(\zeta^{5\frac{N}{2}-1}\right)]$$

Apply
$$\zeta \to \zeta^{-1}$$

Ciphertext Rotations

• Ciphertext is $(ct_0(X), ct_1(X)) \in \mathbb{R}_q^2$ such that

$$ct_1(X) - ct_0(X) * s(X) = m(X) + e(X)$$

• Apply automorphism σ to get $(\sigma(ct_0(X)), \sigma(ct_1(X))) \in R_q^2$

$$\sigma(ct_1(X)) - \sigma(ct_0(X)) * \sigma(s(X)) = \sigma(m(X)) + \sigma(e(X))$$

Ciphertext Rotations

• Apply automorphism σ to get $(\sigma(ct_0(X)), \sigma(ct_1(X))) \in R_q^2$

$$\sigma(ct_1(X)) - \sigma(ct_0(X)) * \sigma(s(X)) = \sigma(m(X)) + \sigma(e(X))$$

- Decrypts to $\approx \sigma(m(X))$ but under key $\sigma(s(X))$
- Apply key-switching from $\sigma(s(X))$ to s(X)

Using CKKS

• Ciphertexts come with tagged info

• Scaling factor, upper bounds on message size and error

Performance optimizations (Full-RNS etc.)

Bootstrapping

Thank You!