An Introduction to the CKKS Approximate
Homomorphic Encryption Scheme

Nathan Manohar
IBM T.J. Watson Research Center

CKKS Approximate HE Scheme (2017)

 Supports arithmetic circuits over real/complex numbers

* Only for approximate arithmetic

— ——

BGV Arithmetic Mod p
BFV Arithmetic Mod p
GSW Boolean Several Bits
FHEW Boolean Several Bits
TFHE Boolean Several Bits

CKKS Arithmetic Real/Complex

* Main insight: Treat error as part of approximate computation error

* Allows for much more efficient constructions!

4)

Dec: 0 » m + error

J

Applications

“* Machine Learning

¢ Secure Genome Analysis
% Big Data Analysis

% Secure Cloud Computing

and many more!

CKKS Overview

* Messages are vectors of up to N/2 complex numbers
* Message spaceisring R = Z|X]|/XN + 1,for N a power of 2

* Vector of cngplex numbers encoded via inverse of canonical embedding
o CN'? up to some precision

* Ciphertexts are two ring elements in R, for a modulus @, and
ciphertextlevel £ < L.

* Homomorphic computation is SIMD

CKKS Message Encoding/Decoding

N
« Z[X]/X"™ + 1 can be embedded into Cz via “canonical embedding”

* Simply means evaluate m(X) € Z[X]/X" + 1 at all N primitive
2Nth roots of unity

27TL

» In this case, these are e2n " for k odd

* Embedding has redundancy since - k and k are complex conjugates

* Vector of N/2 complex numbers expanded to CV

* Multiply by scaling factor A

* Round to image of o(R) and apply o1

 Notation: R = Z[X]/XN +1

» KeyGen(11): Fix N, Q, y. Sample sparse, ternary s € R.
* Enc(1%,s,m): Sample a « R, e « x.Output (a,a * s + e + m).

* Dec(s,ct = (a,b)): Outputb — a *s.

Can easily be made public-key

Fresh Ciphertext

CKKS Encryption/Decryption

* Decryptionis m(X) + e(X) = m(X)
* Since ||C|| = 1, ||e(0)]] relatively small

* Error introduced in each plaintext slot is small

* Ciphertexts:
* (a,a*s+e+m)=(ctyct;) €RZ
« (@,a'xs+e' +m') = (ct'y,ct'y) ER

* Add both components:
*(a+d,(a+d)xs+(e+e)+(m+m))

* Valid encryption of m + m'

1

Homomorphic Multiplication

* Ciphertexts:
* (a,axs+e+m)=(ctycty) ER;
* (d',a' *s+e' +m') = (ct'y,ct'y) €RS

* Multiply:
e (ct; —cty*s)(ct; —ctyg*s) =m=*=m'
o ct; xcty — (ctg*cty + cty * cty) *s + (cty * cty) * s =~ m = m'
 Ciphertextis 3 elements: (cty * ct), cty* ct; + cty * cty, cty * cty)

e Valid encryption of m * m'’

e To decrypt, compute s from s

-

_

How can we prevent the
ciphertext from increasing
in size?

)

13

* Convert a 3 element ciphertext to a 2 element ciphertext

e Main idea: Encrypt s under s

* (ko,k1) = (a,a * s+ e+ Ps?) € Rp

14

Key-Switching

Multiplied ciphertext: (cty * cty, ctg * ct; + cty * cty, ctq * cty)
* Decrypts via cty * ct; — (cty * ct] + cth *cty) * s + (cty * ct)) *s*> =m *m’

(ko, k1) = (a,a *s + e+ Ps*) € R,
* Decryptsviak,; — ky * s ~ Ps?

cty * cty — (cty * cty + cty * cty) *s + (cty *xcty) * P~ H(ky —ky*s) *m *m

Gives two element ciphertext: Add |(cty * ctgy) * P~ 1kq] to ctq * cty,
similarly for other term

!/

Fresh Ciphertext

After Multiplication

» Ciphertext: (a,a *s + m+e) = (cty, cty) € R§

* Reduce ciphertext modulus to g and remove noisy LSBs of message

. (|4 a 2
QQ Ct‘)\ ’ {Q CtlD € Rg
* Consider 6y, 01 so that cty + 8§y, ct; + 04 divisible by%

* Decryptstom + e + (8; — 8 * 5)

17

 Rescaled ct decrypts to % (m + e+ (67 — &y * s))

q q , - : 11
. (5) 00, (5) 61 both polys with coefficients in (— E’E]
* sis sparse and ternary

* Overall rescaling error small

18

Fresh Ciphertext

After Multiplication

After Rescaling

[

—

19

—

Security

* Ciphertext (a,a * s + m + e), decryption givesm + e
* IND-CPA follows from Ring-LWE
* Doesn’t consider public decryptions!

* [LM21] and [LMSS22] show attacks/fixes, introduce IND-CPA-D
security

Plaintext Algebra

* For N a power of 2, Let {,y be a primitive 2Nth root of unity
27Tl

(for example, {,y = e2N)
* Q({,py) is a cyclotomic field
* Q(Gen) = QIX]/(XY + 1)

* Gal(Q({2n)/Q) = Z5y = ngzz

* Gal(Q((on)/Q) = Zyy = ngzz

* 7,y generated by 5 and —1.

* These correspond to the automorphisms X = X®>and X - X1

22

* R = Z[X]/(XY + 1) for N a power of 2.

* Decoding by evaluating m(X) at primitive roots

e How should we order these roots?

23

e How should we order these roots?

N4

° ¢ (5; (52, e (57_1, 1 (—5, (—52, " 5_52

* Second half redundant since m({) = m((_)

e m(X) — @), m(C), ., m (¢57)]

24

e () - [m(Q),m@), ., m (¢57 7))

(%

e () - [m(Q),m@), ., m (¢57 7))

[Apply ¢ = ¢° 1

(%

e () - [m(Q),m@), ., m (¢57 7))

[Apply ¢ = ¢ 1

17~ 17 T~ 17~ (%

Ciphertext Rotations

» Ciphertext is (cto(X), ct; (X)) € Rg such that

ct;1(X) —cty(X) * s(X) = m(X) + e(X)

» Apply automorphism ¢ to get (o (cty (X)), o(ct1(X))) € RS

a(ctl (X)) — a(ctO(X)) * O'(S(X)) = a(m(X)) + a(e(X))

Ciphertext Rotations

» Apply automorphism o to get (o (cto (X)), o(ct;(X))) € RZ
a(ctl (X)) — a(ctO(X)) * O'(S(X)) = a(m(X)) + a(e(X))
* Decrypts to = o(m(X)) but under key o(s(X))

* Apply key-switching from o (s(X)) to s(X)

* Ciphertexts come with tagged info

* Scaling factor, upper bounds on message size and error
* Performance optimizations (Full-RNS etc.)

* Bootstrapping

30

Thank You!

