
Functional Bootstrapping: the FHEW
approach to Homomorphic Encryption

Daniele Micciancio
(UC San Diego)

[May 2024]

Fully Homomorphic Encryption
● Encryption: used to protect data at rest or in transit

● Fully Homomorphic Encryption: supports arbitrary
computations (F) on encrypted data

Enc(m)

Enc(m)
Enc(m)

Enc(m)

Enc(F(m))

FHE Timeline
● Bootstrapping: [G’09]

● FHE from (R)LWE
– [BV’11],[B/FV’12],[BGV’12],[GHS’12],…

● FHE from (R)LWE with polynomial modulus
– [GSW’13],[BV’14],[AP’14],…

● Functional bootstrapping
– [DM’15] (FHEW), [CGGI’16],…,[LW’23],[DKM’24]

● Approximate FHE: [CKKS’17],…

This Talk
● High level

– focus on conceptual ideas
– very few technical details (read the papers!)

● Describe
– current state of the art
– how we got here
– open problems / research directions

Lattice-based Encryption
● secret key: sk = s Zⁿ∈
● Enc (ₛ m) = (A, b = As+mΔ+e) mod q

– A ← random matrix (mod q)

– e ← random noise (|e| < Δ/2)

● Dec (ₛ A,b):
– c = b – As = Δ m + e

– output round(c / Δ) = m

– Notation: [[c]] = round(c / Δ)

A

s

e b=+k

n

Homomorphic Operations

● C₀ = Enc (m₀) = (ₛ A₀, A₀s+m₀Δ+e₀)

● C₁ = Enc (m₁) = (ₛ A₁, A₁s+m₁Δ+e₁)

● C₀+C₁=((A₀+A₁),(A₀+A₁)s+(m₀+m₁)Δ+(e₀+e₁))

● Similarly for (tensor) product … but trickier

● If |eᵢ| < Δ/4, then
– |e₀+e₁| < Δ/2

– C₀+C₁ is a valid encryption of m₀+m₁ (mod p=q/Δ)

● ... but C₀+C₁+C₂ may not decrypt correctly

Bootstrapping [Gentry’09]
● Decryption removes noise from (A,b)=Enc(m)

– Dec(s,(A,b)) = [[b – As]] = [[Δm + e]] = m

– But Dec requires knowing s!

● Bootstrapping: publish ek = Enc(s)
– Compute Dec(...,(A,b)) homomorphically on ek = Enc(s)
– Boot((A,b)) = Eval(Dec(…,(A,b)),ek)

Dec(…,(A,b))
s m Dec(…,(A,b))

Enc(s) Enc(m)

Noise growth and FHE
● M = max noise for C to decrypt correctly
● Compute homomorphically until Noise(C) = M
● Apply Boot(C) to reduce noise

Compute

Eval(Prog,C)

Bootstrap

Eval(Dec(…,C),ek)

Roles of Eval in FHE
● Actual computation on encrypted data

– application specific, directly exposed to the user
– Outer Encryption: Enc(.)

● Evaluate Decryption function/bootstrapping
– More of a bookkeeping task
– Technically necessary, but unrelated to application
– Inner encryption: Enc(.)

Traditional approach
● Used by [Gentry,BV,BGV,BFV, etc.]

● Basic operations: {+,*}
– Enough to describe arbitrary computations

– Boolean circuits: {xor, /\} = {+, *} mod 2

● Bootstrapping:
– Express Dec as a arithmetic/boolean circuit

– Evaluate using the same Enc ≈ Enc

– Enc, Enc may use different parameters as an optimization

Functional Bootstrapping approach
● Introduced in [DM’15] FHEW, and further developed

in FHEW-like schemes like TFHE
● Boot[f]: Enc(m) → Enc(f(m))

– Boot = Boot[id] : Enc(m) → Enc(m)

● Does Boot[f] already give FHE?
– No: f is a unary function on fixed message space
– need at least one binary operation to combine inputs

● Typically enough for Enc to support {+}

Functional Bootstrapping
● New computational model: { +, f }
● Boot[f]: Essentially the same cost as Boot[id]
● Outer scheme: enough for Enc to support {+}

– Very simple Enc,Dec
– Very fast Boot[f] = Eval(f(Dec(...))

Example: FHEW “NAND” circuits
● Encode bits {0,1} as subset of Z₃={0,1,2}

● Addition: {0,1} x {0,1} → {0,1,2}
– regular addition, does not use reduction mod p

● Let f be the function
– f(0)=1, f(1)=1, f(2)=0

● NAND(x,y) = f(x+y)
– x=y=1 iff x+y=2 iff f(x+y)=0

● [DM’15]: FHE bootstrapping in a fraction of a second

Other functions
● majority(x,y,z):

– p=4, greaterThanOne(x+y+z)

● symmetric boolean function:
– f(x₁+…+x)ₖ using p=k

● arbitrary functions:
– f(x₁+2x₂+4x₃+8x₄+…) using p=2ᵏ

– note: p exponential in k

Putting FHEW into context
● [GSW’13] new homomorphic multiplication with “asymmetric” error

growth

● [BV’14] bootstrapping
– Express GSW.Dec as a branching program

– Use GSW to evaluate branching program

● [AlperinSheriff,Peikert’14]
– Idea: use different Enc for normal Eval and Boot

– Implement Boot using a scheme optimized for Dec

– Outer (Enc,Eval) still need to support {+,*}

Homomorphic Decryption
● Constant value: (A,b) mod q
● Encrypted input: ek = Enc(s mod q)
● Computation: s → [[b – As]]

– x = (b-As) linear operation modulo q
– [[x]] non-linear operation: Zq→ Zp

AP’14 bootstrapping (basic)
● Let Enc(b) be a “bit” encryption scheme supporting scalar products

● Encrypt (x mod q) as q ciphertexts
– E[v] = [Enc(0),…,Enc(0),Enc(1),Enc(0),…,Enc(0)]

– E[(v+w) mod q] = E[v] E[w] (convolution)★

● Bootstrap using ek[c,i] = E[c*sᵢ]
– Initialize Acc := E[b]

– Iterate: Acc[v] := Acc[v] ek[★ -Aᵢ,i] = Acc[v - Aᵢsᵢ]

● Rounding: map Acc[b-As] → Enc([[b – As]])
– [Enc(?),Enc(?),Enc(?),Enc(?),Enc(?),Enc(?),Enc(?),Enc(?)]

0 0 0 1 0 0 0 0

+ + + + + + + +
 0 1 0 0 0 0 0 0

Half(3)=1

Polynomial Rings (simplified)
● Cyclic R[n] = Z[X] / (Xⁿ – 1) ≈ Zⁿ

● BGV/BFV: use R[n] to perform n operations in parallel

● Here: use elements of R[n] to encode Zn

– [0,…,0,1,0,…,0] → Xv

– [v+w mod n] = [v] [w] → ★ Xv+w mod n = XvXw

● Acc[v] = RLWE(Xv), ek[v] = RGSW[Xv]

● extract: Acc[Xv] → LWE(f(v))

● For security use cyclotomic R instead of cyclic

FHEW [Ducas,M.’15]
● Efficient (Ring-based) version of [AP’14]

– Instead of q LWE ciphertexts [Enc(0),…,Enc(1),…,Enc(0)]

– Use a single ring ciphertext RLWE(v)=(a,as+e+ΔXv)

– coeff(Xv) = (0,…,0,1,0,…,0)

– Ring dimension n = q

● Functional bootstrapping
– Instead of rounding [[x]], use an arbitrary function f(x)

– map Acc[b-as] = LWE(f(b-as))

● [DM’15] (Functional) bootstrapping in fraction of a second

Developments and State of the Art
● Different bootstrapping algorithms

– [CKKS’16],[LMK+’23]

● Amortized bootstrapping
– [MS’18,GPvL’23,DKMS’24]

● Expanding the message space
– [BDF’18],[LW’23] (Note: F.H.Liu, H.Wang)

● Hybrid bootstrapping:
– [LW’23] (different paper/people: Z.Liu,Y.Wang !)

Bootstrapping Algorithms/Keys
● FHEW/DM: ring version of [AP’14]

– ek[i,j]=E(2ⁱs) for ⱼ {i<lg q, j<n}

– Write aj = ∑2 aⁱ j

● TFHE/CKKS: variant based on [GINX’16]
– Write sⱼ=∑2 ⁱ sᵢ ⱼ with sᵢⱼ {0,1}, ∈ {i<lg q, j<n}

– ek[i,j]=E(sᵢⱼ)
– Better than FHEW/DM when sᵢ {0,1} (see ePrint 2020/086)∈

● [LMK+23]: Best performance using automorphisms

Amortized FHEW bootstrapping
● FHEW: uses R=Zⁿ to encode Z for n=qₙ

– Very inefficient encoding

– Sequential bootstrapping: one ciphertext at a time

● [Micciancio,Sorrell’18]:
– Alternative method to “parallelize” bootstrapping

– Combine n LWE ciphertexts into a single RLWE

– Decryption: b-a s where a,b,s are in R=Zⁿ★
– s R=Zⁿ is still encrypted as E(sᵢ) for i=1…n∈

Amortized bootstrapping: efficiency
● Homomorphic computation:

– Still operates on scalar values b, aᵢ, sᵢ mod q, encrypted as ring
elements RGSW(Xᶜ)

– Improvement is from smaller operation count

● Cost of bootstrapping n ciphertexts
– Sequential: n scalar products a*s, for total n² ops

– Amortized: 1 convolution a s, for total O(n log n) ops (potential)★

– [MS’18]: O(n1+ε) ops, for constant ε

– Amortized cost per input ciphertext: O(n) → O(nε)

Amortized bootstrapping in practice

● [MS’18] asymptotic amortized cost O(nε) = c nε

– Only addition in the exponent: Xv+w = XvXw

– Large hidden constant c=exp(-ε)

– Far from practical due to Nussbaumer transform

● [GPvL’23],[DKMS’24] reduce c to 1/ε
– Use automorphisms for twiddle factors: much closer practical

– Require non-power-of-2 cyclotomic rings

– Limited improvement over sequential bootstrapping

Expanding the message space
● [DM’15,CKKS’16, etc.]: E(v mod q) using R[q]

– LWE ciphertext modulus q=Δp
– E[q] ring dimension q=Δp is linear in p
– Exponential in |v|=log p

● Increasing p is very inefficient!
● [AP’14]: better encoding for large q

Cycle products
● if q = pΔ = p₁p₂...p use CRT: ₖ

– Instead of R[q] = R[p₁p₂...p]ₖ

– Use R[p₁],R[p₂],…,R[p] ₖ

– Final “interpolation” step of computation is still linear
in q

● [Bonnoron,Ducas,Fillinger’18]: practical variant
– Use just the product of two cycles q=p₁p₂,
– Increases FHEW message from 1-bit to 6-bit words

[Liu,Wang’23 (a)]
● Input LWE: q can be as small as √n

● Use ring product R[pq] = (R[q] ★ R[p])
– p ≈ √n, ring size √n*√n = n

– each ring element packs p≈√n values mod q

● Homomorphic product:
– this is a tensor product, contains unwanted “cross terms”

● Solution: use R[pqr] = R[q]★R[p] R[r]★ where p,r ≈ n1/4

– Use Homomorphic Trace computation to cancel “cross terms”

– drawback: can make effective use of only n1/4 slots

[Liu,Wang‘23 (b)]
● [LW’23a]: packs n1/4 slots in 1 FHEW ciphertext

– Amortized complexity of bootstrapping: n0.75

– Better than FHEW (n), but worse than [MS’18] nε

● [LW’23b]: combines [LW’23a]+[MS’18]
– amortized complexity: polylog(n)!
– inherits Nussbaumer transform from [MS’18]
– great in theory, but far from practical

Practical considerations
● [BDF’18],[LW’23ab],[MS’18/GPvL’23/DKM’24]

– improve FHEW in interesting directions
– mostly theoretical, poor performance in practice
– require rings R[q] for q other than 2ⁿ

● Arithmetic in non-powers-of-two rings
– not well supported by libraries
– seems 10x slower or worse in practice

Hybrid approach
● [Liu,Wang’23] Use BFV to bootstrap FHEW

– express FHEW bootstrap as a degree q polynomial
– evaluate polynomial using BFV SIMD {+,*}

operations

● Performance
– n parallel bootstrapping thanks to BFV SIMD
– supports FHEW functional bootstrapping
– 7ms per bootstrapping!

Conclusion
● Functional bootstrapping

– powerful model of homomorphic encryption

– Many interesting theoretical developments

– Best performance: hybrid with BGV/BFV (superpoly)

– Explored also in pure BGV/BFV/CKKS setting (superpoly)

● Research directions
– improve practicality of FHEW-like functional boostrapping with

poly(n) modulus

– needed: practical support of arbitrary cyclotomic rings

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

