Functional Bootstrapping: the FHEW approach to Homomorphic Encryption

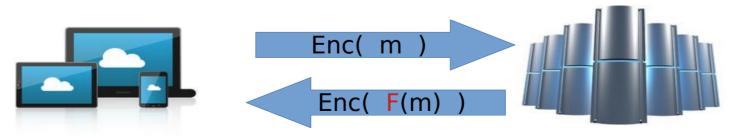
Daniele Micciancio (UC San Diego)

[May 2024]

Fully Homomorphic Encryption

• Encryption: used to protect data at rest or in transit

 Fully Homomorphic Encryption: supports arbitrary computations (F) on encrypted data



FHE Timeline

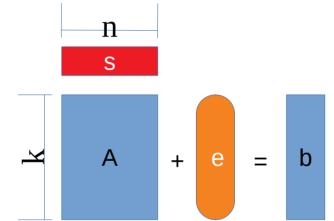
- Bootstrapping: [G'09]
- FHE from (R)LWE
 - [BV'11],[B/FV'12],[BGV'12],[GHS'12],...
- FHE from (R)LWE with polynomial modulus
 - [GSW'13],[BV'14],[AP'14],...
- Functional bootstrapping
 - [DM'15] (FHEW), [CGGI'16],...,[LW'23],[DKM'24]
- Approximate FHE: [CKKS'17],...

This Talk

- High level
 - focus on conceptual ideas
 - very few technical details (read the papers!)
- Describe
 - current state of the art
 - how we got here
 - open problems / research directions

Lattice-based Encryption

- secret key: $sk = s \in Z^n$
- $Enc_s(m) = (A, b = As+m\Delta+e) \mod q$
 - − A ← random matrix (mod q)
 - e \leftarrow random noise (|e| < $\Delta/2$)
- Dec_s(A,b):
 - $c = b As = \Delta m + e$
 - output round(c / Δ) = m
 - Notation: [[c]] = round(c / Δ)



Homomorphic Operations

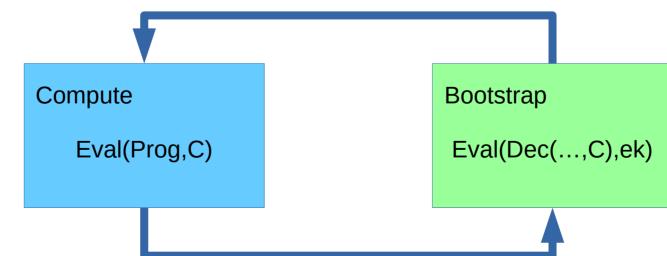
- $C_0 = Enc_s(m_0) = (A_0, A_0s + m_0\Delta + e_0)$
- $C_1 = Enc_s(m_1) = (A_1, A_1s + m_1\Delta + e_1)$
- $C_0+C_1=((A_0+A_1),(A_0+A_1)S+(m_0+m_1)\Delta+(e_0+e_1))$
- Similarly for (tensor) product ... but trickier
- If $|e_i| < \Delta/4$, then
 - $|e_0 + e_1| < \Delta/2$
 - C_0+C_1 is a valid encryption of $m_0+m_1 \pmod{p=q/\Delta}$
- ... but $C_0+C_1+C_2$ may not decrypt correctly

Bootstrapping [Gentry'09]

- Decryption removes noise from (A,b)=Enc(m)
 - $Dec(s,(A,b)) = [[b As]] = [[\Delta m + e]] = m$
 - But Dec requires knowing s!
- Bootstrapping: publish ek = Enc(s)
 - Compute Dec(...,(A,b)) homomorphically on ek = Enc(s)
 - Boot((A,b)) = Eval(Dec(...,(A,b)),ek)

Noise growth and FHE

- M = max noise for C to decrypt correctly
- Compute homomorphically until Noise(C) = M
- Apply Boot(C) to reduce noise



Roles of Eval in FHE

- Actual computation on encrypted data
 - application specific, directly exposed to the user
 - Outer Encryption: Enc(.)
- Evaluate Decryption function/bootstrapping
 - More of a bookkeeping task
 - Technically necessary, but unrelated to application
 - Inner encryption: Enc(.)

Traditional approach

- Used by [Gentry, BV, BGV, BFV, etc.]
- Basic operations: {+,*}
 - Enough to describe arbitrary computations
 - Boolean circuits: $\{xor, /\} = \{+, *\} \mod 2$
- Bootstrapping:
 - Express Dec as a arithmetic/boolean circuit
 - Evaluate using the same $Enc \approx Enc$
 - Enc, Enc may use different parameters as an optimization

Functional Bootstrapping approach

- Introduced in [DM'15] FHEW, and further developed in FHEW-like schemes like TFHE
- Boot[f]: $Enc(m) \rightarrow Enc(f(m))$
 - Boot = Boot[id] : $Enc(m) \rightarrow Enc(m)$
- Does Boot[f] already give FHE?
 - No: f is a unary function on fixed message space
 - need at least one binary operation to combine inputs
- Typically enough for Enc to support {+}

Functional Bootstrapping

- New computational model: { +, f }
- Boot[f]: Essentially the same cost as Boot[id]
- Outer scheme: enough for Enc to support {+}
 - Very simple Enc, Dec
 - Very fast Boot[f] = Eval(f(Dec(...))

Example: FHEW "NAND" circuits

- Encode bits $\{0,1\}$ as subset of $Z_3 = \{0,1,2\}$
- Addition: $\{0,1\} \times \{0,1\} \rightarrow \{0,1,2\}$
 - regular addition, does not use reduction mod p
- Let **f** be the function
 - f(0)=1, f(1)=1, f(2)=0
- NAND(x,y) = f(x+y)

- x=y=1 iff x+y=2 iff f(x+y)=0

• [DM'15]: FHE bootstrapping in a fraction of a second

Other functions

- majority(x,y,z):
 - p=4, greaterThanOne(x+y+z)
- symmetric boolean function:
 - $f(x_1+...+x_k)$ using p=k
- arbitrary functions:
 - $f(x_1+2x_2+4x_3+8x_4+...)$ using p=2^k
 - note: p exponential in k

Putting FHEW into context

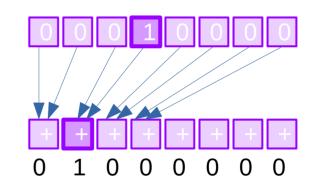
- [GSW'13] new homomorphic multiplication with "asymmetric" error growth
- [BV'14] bootstrapping
 - Express GSW.Dec as a branching program
 - Use GSW to evaluate branching program
- [AlperinSheriff,Peikert'14]
 - Idea: use different Enc for normal Eval and Boot
 - Implement Boot using a scheme optimized for Dec
 - Outer (Enc, Eval) still need to support {+,*}

Homomorphic Decryption

- Constant value: (A,b) mod q
- Encrypted input: ek = Enc(s mod q)
- Computation: $s \rightarrow [[b As]]$
 - $\mathbf{x} = (b-As)$ linear operation modulo q
 - [[**x**]] non-linear operation: $Z_q \rightarrow Z_p$

AP'14 bootstrapping (basic)

- Let Enc(b) be a "bit" encryption scheme supporting scalar products
- Encrypt (x mod q) as q ciphertexts
 - E[v] = [Enc(0), ..., Enc(0), Enc(1), Enc(0), ..., Enc(0)]
 - $E[(v+w) \mod q] = E[v] \star E[w]$ (convolution)
- Bootstrap using ek[c,i] = E[c*si]
 - Initialize Acc := E[b]
 - Iterate: $Acc[v] := Acc[v] \star ek[-A_i,i] = Acc[v A_is_i]$
- Rounding: map $Acc[b-As] \rightarrow Enc([[b-As]])$
 - [Enc(?),Enc(?),Enc(?),Enc(?),Enc(?),Enc(?),Enc(?),Enc(?)]



Half(3)=1

Polynomial Rings (simplified)

- Cyclic R[n] = Z[X] / $(X^n 1) \approx Z^n$
- BGV/BFV: use R[n] to perform n operations in parallel
- Here: use elements of R[n] to encode Z_n

$$- [0, \dots, 0, 1, 0, \dots, 0] \rightarrow X^{\vee}$$

- [v+w mod n] = [v]★[w] → $X^{v+w \mod n} = X^vX^w$
- Acc[v] = RLWE(X^v), ek[v] = RGSW[X^v]
- extract: $Acc[X^{v}] \rightarrow LWE(f(v))$
- For security use cyclotomic R instead of cyclic

FHEW [Ducas,M.'15]

- Efficient (Ring-based) version of [AP'14]
 - Instead of q LWE ciphertexts [Enc(0),...,Enc(1),...,Enc(0)]
 - Use a single ring ciphertext RLWE(v)=(a,as+e+ ΔX^{\vee})
 - $coeff(X^{v}) = (0, ..., 0, 1, 0, ..., 0)$
 - Ring dimension n = q
- Functional bootstrapping
 - Instead of rounding [[x]], use an arbitrary function f(x)
 - map Acc[b-as] = LWE(f(b-as))
- [DM'15] (Functional) bootstrapping in fraction of a second

Developments and State of the Art

- Different bootstrapping algorithms
 - [CKKS'16],[LMK+'23]
- Amortized bootstrapping
 - [MS'18,GPvL'23,DKMS'24]
- Expanding the message space
 - [BDF'18],[LW'23] (Note: F.H.Liu, H.Wang)
- Hybrid bootstrapping:
 - [LW'23] (different paper/people: Z.Liu, Y.Wang !)

Bootstrapping Algorithms/Keys

- FHEW/DM: ring version of [AP'14]
 - ek[i,j]=E(2ⁱs_j) for {i<lg q, j<n}</pre>
 - Write $a_j = \sum 2^i a_j$
- TFHE/CKKS: variant based on [GINX'16]
 - Write $s_j = \sum 2^i s_{ij}$ with $s_{ij} \in \{0,1\}$, $\{i < lg q, j < n\}$
 - ek[i,j]=E(Sij)
 - Better than FHEW/DM when $s_i \in \{0,1\}$ (see ePrint 2020/086)
- [LMK+23]: Best performance using automorphisms

Amortized FHEW bootstrapping

- FHEW: uses R=Zⁿ to encode Z_n for n=q
 - Very inefficient encoding
 - Sequential bootstrapping: one ciphertext at a time
- [Micciancio,Sorrell'18]:
 - Alternative method to "parallelize" bootstrapping
 - Combine n LWE ciphertexts into a single RLWE
 - Decryption: b-a \star s where a,b,s are in R=Zⁿ
 - $s \in R=Z^n$ is still encrypted as $E(s_i)$ for i=1...n

Amortized bootstrapping: efficiency

- Homomorphic computation:
 - Still operates on scalar values b, a_i, s_i mod q, encrypted as ring elements RGSW(X^c)
 - Improvement is from smaller operation count
- Cost of bootstrapping n ciphertexts
 - Sequential: n scalar products a*s, for total n² ops
 - Amortized: 1 convolution $a \star s$, for total O(n log n) ops (potential)
 - [MS'18]: O(n^{1+ ϵ}) ops, for constant ϵ
 - Amortized cost per input ciphertext: $O(n) \rightarrow O(n^{\epsilon})$

Amortized bootstrapping in practice

- [MS'18] asymptotic amortized cost $O(n^{\epsilon}) = c n^{\epsilon}$
 - Only addition in the exponent: $X^{v+w} = X^{v}X^{w}$
 - Large hidden constant $c=exp(-\varepsilon)$
 - Far from practical due to Nussbaumer transform
- [GPvL'23],[DKMS'24] reduce c to 1/ε
 - Use automorphisms for twiddle factors: much closer practical
 - Require non-power-of-2 cyclotomic rings
 - Limited improvement over sequential bootstrapping

Expanding the message space

- [DM'15,CKKS'16, etc.]: E(v mod q) using R[q]
 - LWE ciphertext modulus $q=\Delta p$
 - E[q] ring dimension $q=\Delta p$ is linear in p
 - Exponential in $|v| = \log p$
- Increasing p is very inefficient!
- [AP'14]: better encoding for large q

Cycle products

- if $q = p\Delta = p_1p_2...p_k$ use CRT:
 - Instead of $R[q] = R[p_1p_2...p_k]$
 - Use $R[p_1], R[p_2], ..., R[p_k]$
 - Final "interpolation" step of computation is still linear in q
- [Bonnoron,Ducas,Fillinger'18]: practical variant
 - Use just the product of two cycles $q=p_1p_2$,
 - Increases FHEW message from 1-bit to 6-bit words

[Liu,Wang'23 (a)]

- Input LWE: q can be as small as \sqrt{n}
- Use ring product R[pq] = (R[q] ★ R[p])
 - p ≈ \sqrt{n} , ring size $\sqrt{n} \sqrt{n} = n$
 - each ring element packs $p \approx \sqrt{n}$ values mod q
- Homomorphic product:
 - this is a tensor product, contains unwanted "cross terms"
- Solution: use $R[pqr] = R[q] \star R[p] \star R[r]$ where $p,r \approx n^{1/4}$
 - Use Homomorphic Trace computation to cancel "cross terms"
 - drawback: can make effective use of only n^{1/4} slots

[Liu,Wang'23 (b)]

- [LW'23a]: packs n^{1/4} slots in 1 FHEW ciphertext
 - Amortized complexity of bootstrapping: n^{0.75}
 - Better than FHEW (n), but worse than [MS'18] n^{ϵ}
- [LW'23b]: combines [LW'23a]+[MS'18]
 - amortized complexity: polylog(n)!
 - inherits Nussbaumer transform from [MS'18]
 - great in theory, but far from practical

Practical considerations

- [BDF'18],[LW'23ab],[MS'18/GPvL'23/DKM'24]
 - improve FHEW in interesting directions
 - mostly theoretical, poor performance in practice
 - require rings R[q] for q other than 2^n
- Arithmetic in non-powers-of-two rings
 - not well supported by libraries
 - seems 10x slower or worse in practice

Hybrid approach

- [Liu,Wang'23] Use BFV to bootstrap FHEW
 - express FHEW bootstrap as a degree q polynomial
 - evaluate polynomial using BFV SIMD {+,*}
 operations
- Performance
 - n parallel bootstrapping thanks to BFV SIMD
 - supports FHEW functional bootstrapping
 - 7ms per bootstrapping!

Conclusion

- Functional bootstrapping
 - powerful model of homomorphic encryption
 - Many interesting theoretical developments
 - Best performance: hybrid with BGV/BFV (superpoly)
 - Explored also in pure BGV/BFV/CKKS setting (superpoly)
- Research directions
 - improve practicality of FHEW-like functional boostrapping with poly(n) modulus
 - needed: practical support of arbitrary cyclotomic rings