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Fully Homomorphic Encryption
● Encryption: used to protect data at rest or in transit

● Fully Homomorphic Encryption: supports arbitrary 
computations (F) on encrypted data
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FHE Timeline
● Bootstrapping: [G’09]

● FHE from (R)LWE
– [BV’11],[B/FV’12],[BGV’12],[GHS’12],…

● FHE from (R)LWE with polynomial modulus
– [GSW’13],[BV’14],[AP’14],… 

● Functional bootstrapping
– [DM’15] (FHEW), [CGGI’16],…,[LW’23],[DKM’24]

● Approximate FHE: [CKKS’17],…



  

This Talk
● High level

– focus on conceptual ideas
– very few technical details (read the papers!)

● Describe
– current state of the art
– how we got here
– open problems / research directions



  

Lattice-based Encryption
● secret key: sk = s Zⁿ∈
● Enc (ₛ m) = (A, b = As+mΔ+e) mod q

– A ← random matrix (mod q) 

– e ← random noise (|e| < Δ/2)

● Dec (ₛ A,b):
– c = b – As = Δ m + e

– output round( c / Δ ) = m

– Notation: [[ c ]] = round( c / Δ )
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Homomorphic Operations

● C₀ = Enc (m₀) = (ₛ A₀, A₀s+m₀Δ+e₀)

● C₁ = Enc (m₁) =  (ₛ A₁, A₁s+m₁Δ+e₁)

● C₀+C₁=((A₀+A₁),(A₀+A₁)s+(m₀+m₁)Δ+(e₀+e₁))

● Similarly for (tensor) product … but trickier

● If |eᵢ| < Δ/4, then 
– |e₀+e₁| < Δ/2

– C₀+C₁ is a valid encryption of m₀+m₁  (mod p=q/Δ)

● ... but C₀+C₁+C₂ may not decrypt correctly 



  

Bootstrapping [Gentry’09]
● Decryption removes noise from  (A,b)=Enc(m)

– Dec(s,(A,b)) = [[ b – As ]] = [[ Δm + e ]] = m

– But Dec requires knowing s!

● Bootstrapping: publish ek = Enc(s)
– Compute Dec(...,(A,b)) homomorphically on ek = Enc(s)
– Boot((A,b)) = Eval(Dec(…,(A,b)),ek)

Dec(…,(A,b))
s m Dec(…,(A,b))

Enc(s) Enc(m)



  

Noise growth and FHE
● M = max noise for C to decrypt correctly
● Compute homomorphically until Noise(C) = M
● Apply Boot(C) to reduce noise

Compute                  

Eval(Prog,C)

Bootstrap                 

Eval(Dec(…,C),ek)



  

Roles of Eval in FHE
● Actual computation on encrypted data

– application specific, directly exposed to the user
– Outer Encryption: Enc(.)

● Evaluate Decryption function/bootstrapping
– More of a bookkeeping task
– Technically necessary, but unrelated to application
– Inner encryption: Enc(.)



  

Traditional approach
● Used by [Gentry,BV,BGV,BFV, etc.]

● Basic operations: {+,*}
– Enough to describe arbitrary computations

– Boolean circuits: {xor, /\} = {+, *} mod 2

● Bootstrapping:
– Express Dec as a arithmetic/boolean circuit

– Evaluate using the same Enc ≈ Enc

– Enc, Enc may use different parameters as an optimization



  

Functional Bootstrapping approach
● Introduced in [DM’15] FHEW, and further developed 

in FHEW-like schemes like TFHE
● Boot[f]: Enc(m) → Enc(f(m))

– Boot = Boot[id] : Enc(m) → Enc(m)

● Does Boot[f] already give FHE?
– No: f is a unary function on fixed message space
– need at least one binary operation to combine  inputs

● Typically enough for Enc to support {+}



  

Functional Bootstrapping 
● New computational model: { +, f }
● Boot[f]: Essentially the same cost as Boot[id]
● Outer scheme: enough for Enc to support {+}

– Very simple Enc,Dec
– Very fast Boot[f] = Eval(f(Dec(...))



  

Example: FHEW “NAND” circuits
● Encode bits {0,1} as subset of Z₃={0,1,2}

● Addition: {0,1} x {0,1} → {0,1,2}
– regular addition, does not use reduction mod p

● Let f be the function
–  f(0)=1,  f(1)=1,  f(2)=0

● NAND(x,y) = f(x+y) 
– x=y=1    iff   x+y=2    iff   f(x+y)=0

● [DM’15]: FHE bootstrapping in a fraction of a second



  

Other functions
● majority(x,y,z):

– p=4, greaterThanOne(x+y+z)

● symmetric boolean function: 
– f(x₁+…+x )ₖ   using p=k

● arbitrary functions: 
– f(x₁+2x₂+4x₃+8x₄+…) using p=2ᵏ

– note: p exponential in k



  

Putting FHEW into context
● [GSW’13] new homomorphic multiplication with “asymmetric” error 

growth

● [BV’14] bootstrapping
– Express GSW.Dec as a branching program

– Use GSW to evaluate branching program

● [AlperinSheriff,Peikert’14]
– Idea: use different Enc for normal Eval and Boot

– Implement Boot using a scheme optimized for Dec

– Outer (Enc,Eval) still need to support {+,*}



  

Homomorphic Decryption
● Constant value: (A,b) mod q
● Encrypted input: ek = Enc(s mod q)
● Computation: s → [[ b – As ]]

– x = (b-As) linear operation modulo q
– [[ x ]] non-linear operation: Zq→ Zp



  

AP’14 bootstrapping (basic)
● Let Enc(b) be a “bit” encryption scheme supporting scalar products

● Encrypt (x mod q) as q ciphertexts
– E[v] = [Enc(0),…,Enc(0),Enc(1),Enc(0),…,Enc(0)]

– E[(v+w) mod q] = E[v] E[w]   (convolution)★

● Bootstrap using ek[c,i] = E[c*sᵢ] 
– Initialize Acc := E[b]

– Iterate: Acc[v] := Acc[v]  ek[★ -Aᵢ,i]  = Acc[v - Aᵢsᵢ]

● Rounding: map Acc[b-As] → Enc([[b – As]])
– [Enc(?),Enc(?),Enc(?),Enc(?),Enc(?),Enc(?),Enc(?),Enc(?)]

0 0 0 1 0 0 0 0

+ + + + + + + +
  0    1   0   0   0   0   0   0

Half(3)=1



  

Polynomial Rings (simplified)
● Cyclic R[n] = Z[X] / (Xⁿ – 1) ≈ Zⁿ

● BGV/BFV: use R[n] to perform n operations in parallel

● Here: use elements of R[n] to encode Zn

– [0,…,0,1,0,…,0] →  Xv

– [v+w mod n] = [v] [w] → ★ Xv+w mod n = XvXw

● Acc[v] = RLWE(Xv),      ek[v] = RGSW[Xv]

● extract: Acc[Xv] → LWE(f(v))

● For security use cyclotomic R instead of cyclic 



  

FHEW [Ducas,M.’15]
● Efficient (Ring-based) version of [AP’14]

– Instead of q LWE ciphertexts [Enc(0),…,Enc(1),…,Enc(0)]

– Use a single ring ciphertext RLWE(v)=(a,as+e+ΔXv )

– coeff(Xv) = (0,…,0,1,0,…,0)

– Ring dimension n = q

● Functional bootstrapping
– Instead of rounding [[ x ]], use an arbitrary function f(x)

– map Acc[b-as] = LWE(f(b-as))

● [DM’15] (Functional) bootstrapping in fraction of a second



  

Developments and State of the Art
● Different bootstrapping algorithms

– [CKKS’16],[LMK+’23]

● Amortized bootstrapping
– [MS’18,GPvL’23,DKMS’24]

● Expanding the message space
– [BDF’18],[LW’23] (Note: F.H.Liu, H.Wang)

● Hybrid bootstrapping: 
– [LW’23] (different paper/people: Z.Liu,Y.Wang !)



  

Bootstrapping Algorithms/Keys
● FHEW/DM: ring version of [AP’14]

– ek[i,j]=E(2ⁱs ) for ⱼ {i<lg q, j<n}

– Write aj = ∑2 aⁱ j

● TFHE/CKKS: variant based on [GINX’16]
– Write sⱼ=∑2  ⁱ sᵢ  ⱼ  with sᵢⱼ  {0,1}, ∈ {i<lg q, j<n}

– ek[i,j]=E(sᵢⱼ)
– Better than FHEW/DM when sᵢ {0,1}  (see ePrint 2020/086)∈

● [LMK+23]: Best performance using automorphisms



  

Amortized FHEW bootstrapping
● FHEW: uses R=Zⁿ to encode Z  for n=qₙ

– Very inefficient encoding

– Sequential bootstrapping: one ciphertext at a time

● [Micciancio,Sorrell’18]:
– Alternative method to “parallelize” bootstrapping

– Combine n LWE ciphertexts into a single RLWE

– Decryption: b-a s where a,b,s are in R=Zⁿ★
– s R=Zⁿ is still encrypted as E(sᵢ) for i=1…n∈



  

Amortized bootstrapping: efficiency
● Homomorphic computation:

– Still operates on scalar values b, aᵢ, sᵢ mod q, encrypted as ring 
elements RGSW(Xᶜ)

– Improvement is from smaller operation count

● Cost of bootstrapping n ciphertexts
– Sequential: n scalar products a*s, for total n² ops

– Amortized: 1 convolution a s, for total O(n log n) ops (potential)★

– [MS’18]: O(n1+ε) ops, for constant ε

– Amortized cost per input ciphertext: O(n) →  O(nε)



  

Amortized bootstrapping in practice

● [MS’18] asymptotic amortized cost O(nε) = c nε 

– Only addition in the exponent: Xv+w = XvXw      

– Large hidden constant c=exp(-ε)

– Far from practical due to Nussbaumer transform

● [GPvL’23],[DKMS’24] reduce c to 1/ε
– Use automorphisms for twiddle factors: much closer practical

– Require non-power-of-2 cyclotomic rings

– Limited improvement over sequential bootstrapping



  

Expanding the message space
● [DM’15,CKKS’16, etc.]: E(v mod q) using R[q]

– LWE ciphertext modulus q=Δp
– E[q] ring dimension q=Δp is linear in p
– Exponential in |v|=log p

● Increasing p is very inefficient!
● [AP’14]: better encoding for large q



  

Cycle products
● if q = pΔ = p₁p₂...p  use CRT: ₖ

– Instead of R[q] = R[p₁p₂...p ]ₖ

– Use R[p₁],R[p₂],…,R[p ] ₖ

– Final “interpolation” step of computation is still linear 
in q

● [Bonnoron,Ducas,Fillinger’18]: practical variant
– Use just the product of two cycles q=p₁p₂, 
– Increases FHEW message from 1-bit to 6-bit words 



  

[Liu,Wang’23 (a)]
● Input LWE: q can be as small as √n

● Use ring product R[pq] = (R[q]  ★ R[p])
– p ≈ √n,  ring size √n*√n = n

– each ring element packs p≈√n values mod q

● Homomorphic product:
– this is a tensor product, contains unwanted “cross terms”

● Solution: use R[pqr] = R[q]★R[p] R[r]★  where p,r ≈ n1/4

– Use Homomorphic Trace computation to cancel “cross terms”

– drawback: can make effective use of only n1/4 slots



  

[Liu,Wang‘23 (b)]
● [LW’23a]: packs n1/4 slots in 1 FHEW ciphertext

– Amortized complexity of bootstrapping: n0.75

– Better than FHEW (n), but worse than [MS’18] nε

● [LW’23b]: combines [LW’23a]+[MS’18]
– amortized complexity: polylog(n)!
– inherits Nussbaumer transform from [MS’18]
– great in theory, but far from practical



  

Practical considerations
● [BDF’18],[LW’23ab],[MS’18/GPvL’23/DKM’24]

– improve FHEW in interesting directions
– mostly theoretical, poor performance in practice
– require rings R[q] for q other than 2ⁿ 

● Arithmetic in non-powers-of-two rings
– not well supported by libraries 
– seems 10x slower or worse in practice



  

Hybrid approach
● [Liu,Wang’23] Use BFV to bootstrap FHEW

– express FHEW bootstrap as a degree q polynomial
– evaluate polynomial using BFV SIMD {+,*} 

operations 

● Performance
– n parallel bootstrapping thanks to BFV SIMD 
– supports FHEW functional bootstrapping
– 7ms per bootstrapping!



  

Conclusion
● Functional bootstrapping

– powerful model of homomorphic encryption

– Many interesting theoretical developments

– Best performance: hybrid with BGV/BFV  (superpoly)

– Explored also in pure BGV/BFV/CKKS setting  (superpoly)

● Research directions
– improve practicality of FHEW-like functional boostrapping with 

poly(n) modulus

– needed: practical support of arbitrary cyclotomic rings
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