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Secure Multiparty Computation 
Problem

“MPC Protocol”

Secure Multiparty Computation
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[Input privacy] 
“Without revealing more information 
about the inputs than what y does”

[Functionality] 
“Output y”

Multiple parties want to compute a public function without disclosing their inputs.

x1 x2

x3

Garbling-based
[Yao86][GMW87][BMR90]...

Linear Secret-Sharing-based
[Bea91][DPSZ+12][KOS16]...MHE

f(x1, x2, x3) = y

𝒫
❖ N parties

𝒜⊂𝒫
❖ N-1 adversaries
❖ Passive and static



Multiparty Homomorphic Encryption – Intuition

MHE.Encrypt

MHE.Encrypt

MHE.Encrypt Enc(x3) 3

x1

x2

x3

 y

Multiparty Homomorphic Encryption (MHE) extends Homomorphic Encryption (HE) with an access-structure.

Enc(x2)

Enc(x1)

Enc(y)MHE.KeyGen MHE.Decrypt
MHE.Eval

y= f(x1,x2,x3)

KeyGen DecryptEncrypt EvalMHE = 

MHE Scheme HE Semantic Security + AS
⇓

Input Privacy

Correctness
⇓

FunctionalityMHE-based MPC Protocol

sk1 sk2 sk3 sk1 sk2 sk3

sk1

sk2

sk3

sk1

sk2

sk3



Multiparty Homomorphic Encryption – Two Main Families
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There are two main families of MHE schemes.

Multiparty Homomorphic Encryption 

Multi-key Homomorphic Encryption
[LTV12][MW16][CDKS19] 

Threshold Homomorphic Encryption 
[CD10][AJLT+12][GLS16][MBH23]…

MHE with dynamic access structure
+ Parties can join the computation “on-the-fly”
- Non-compact ciphertext and public keys 

MHE with static access structure
- Fixed group keygen before inputs
+ Compact ciphertext and keys

MKHE.Eval ThHE.EvalEnc{sk1}(x1)

Enc{sk2}(x2)
Enc{sk1, sk2}(f(x1,x2))

Enctsk(x1)

Enctsk(x2)
Enctsk(f(x1,x2))



Multiparty Homomorphic Encryption – Two Orthogonal Families
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There are two main families of MHE schemes.

Multiparty Homomorphic Encryption 

Multi-key Homomorphic Encryption
[LTV12][MW16][CDKS19] 

Threshold Homomorphic Encryption 
[CD10][AJLT+12][GLS16][MBH23]…

MHE with dynamic secret-key access structure MHE with static secret-key access structure

Multi-group Homomorphic Encryption 
[KLSW24]

MHE with dynamic, fixed-groups access-structure



    Setup Phase                    Compute Phase

MHE-based MPC (Threshold-FHE case)

☁ 

Encryptcp
k

Encryptcp
k

Encryptcp
k

Evalevk
EncKeyGen

Decrypt

EncS(x3
)
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x1

x2

x3

EncS(x2
)

EncS(x1
)

EncS(y)

s1

s2

s3

s1

s2

s3

EvalKeyGen& y

s = Combine(s1, s2 , 
s3)

N-out-of-N-threshold:  s = s1+ s2 + s3

T-out-of-N-threshold:  s = Δ1s1+ Δ2s2

SecKeyGen

evks

cpks



Background: Ring learning-with-error [LPR10]

RLWE distribution:
Let:

R= ℤq[X]/(Xn+1) be a ring of degree n-1 polynomials with coefficients mod q,

U(R) be the uniform distribution over R,

Err(R)        be an error distribution over R  (||e|| << q,  e ←  Err(R)),

s  ∈  R be a secret value in R 

the ring learning-with-error distribution over s is defined as:
RLWEs :=  (sa + e,  a) a ← U(R) e ← Err(R)
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RLWEs ≡ U(R2)c
Given a polynomial number of independent samples from the RLWEs

 distribution:
- Search: find s.
- Decision: distinguish from U(R2)



A simplified RLWE-based HE scheme.

Let  f: R→ R,   and  ||s|| = 1  

Background: (Symmetric) HE From RLWE
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HE.SymEncrypt HE.Eval HE.Decryptm

f

m’≅ f(m)ct ct’
∈  R ∈  R2ct = (c0, c1) 

     = (m, 0) – RLWEs 
    =  (m - (sa + e), a)

m’ = c’0+sc’1
      = m’ - (sa + e’)+sa

Scheme’s operations are affine functions of the secret-key.



Secret-key operations are affine functions of the secret key

Other operations are also affine functions of the secret-key: sa + e + x
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Compute phase:

Decrypt: sc1 + e + c0

Re-encrypt: ((s-s’)c1 + e + c0, c1)

Setup phase:

Public Encryption Key Generation: (sa + e, a) 

Public Rotation Key Generation for rotk(∙) : (sb + e + rot-k(s)w, b)

Public Relinearization Key Generation: (sd + e + s2w, d) 



Ideal Real

MHE Scheme Construction – Secret-key Operations

Affine secret-key operations can be implemented as single-round protocols (Generalizing [AJLT+12][MTBH+21]).
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KeyOp sa+e ≈ sa

s1

s2

s3

a

GenShare
b1 = s1a 

GenShare

☁ 

GenShare
AggShares

b2 = s2a

b3 = s3a 

a  ∑bi  =   sa

s = ∑si

 + e1

 + e2

 + e3

+ ∑ei  ≈  sa

N

i=1

N

i=1

N

i=1

→ We refer to these protocols as having Public Aggregatable Transcripts (PAT)



Helper-Assisted, MHE-based MPC
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Setup Compute

Encrypt

Encrypt

Encrypt

Eval

x1

x2

x3

evk
s1

s2

s3

s1

s2

s3

Public Transcript
✓ Delegated public share aggregation
✓ Sublinear MPC

cpk y

PKG.GenShare

PKG.AggShares DEC.AggShares

DEC.GenShare

DEC.GenShare

DEC.GenShare

☁ ☁ ☁ 
PKG.GenShare

PKG.GenShare

Delegated evaluation
✓ In classic passive-adversary setting

Low communication complexity
✓ 2+2 rounds
✓ Non-interactive Eval

One-time setup
✓ Amortizable cost
✓ Session-like paradigm

The MHE-based MPC protocol has many practical advantages. [MTBH+21]



Setup Compute

Helper-Assisted, MHE-based MPC 
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Encrypt

Encrypt

Encrypt

Eval

x1

x2

x3

evk
s1

s2

s3

s1

s2

s3

cpk EncRec(y)

☁ ☁ ☁ 

Practicality Enhancements [MTBH21]

PKG.GenShare

PKG.AggShares KS.AggShares

KS.GenShare

KS.GenShare

KS.GenShare

PKG.GenShare

PKG.GenShare

✓ Refresh protocol
○ Interactive “bootstrapping”
○ Single-round

✓ Proxy-reencryption to design. receiver
○ DEC → (P)KS
○ Internal & External (given pk)

✓ Switching to/from data-level SS
○ Single-round



Setup Compute

Helper-Assisted, MHE-based MPC
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Encrypt

Encrypt

Encrypt

Eval

x1

x2

x3

evk
s1

s2

s3

s1

s2

s3

cpk y
☁ ☁ ☁ 

Fault-tolerance ? 
● Temporary disconnects & Reboots
● Full crashes

“Bad”
● … but “by design” when |𝒜| = N-1
→ What about |𝒜| < T    ?

PKG.GenShare

PKG.AggShares DEC.AggShares

DEC.GenShare

DEC.GenShare

DEC.GenShare

PKG.GenShare

PKG.GenShare

“Not that bad”
● Most of the protocol state is public
● Delays the result



Ideal Real

T-out-of-N-Threshold Secret-Key Operations ? 

Running PAT protocols among T < N parties.
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KeyOp as+e ≈ as

s1

s2

s3

a

b1 = ???

b2 = ???

b3 = ???

a  ???   ≈    sa



Previous Approaches

Previous approaches either require a trusted dealer or are leaky (and are all non-compact)
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Approach Trusted dealer Leaky Non-Compact

1. Two-step [AJLT+12] No Yes Yes

2. Single-step [BGGJ+18] Yes No Yes

Ours [MBH23] No No No

Compromises the secret-keys of offline parties
→ Compromises the “session”. 

Requiring non-constant-size secrets
→ Leads to costly storage & ops.



Combine
s = S(0) = ∑Δi si

Shamir Secret-Sharing Scheme Reminder [Shamir 1979]

Shares are points on a uniformly random polynomial S over some finite field K where:
- S has degree-(T-1) and 
- s = S(0).

The secret reconstruction is a linear combination of the shares with the Lagrange interpolation coefficients:

For  𝒫’ ⊂ 𝒫 |𝒫’| ≥ T (w.l.o.g. assume 𝒫’ = {P1, P2, …, PT}):
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𝒫’T

i=1

ShareT

   S ← U(K[X])

S(𝛼1) 
S(𝛼2) 
S(𝛼3) 

s

(𝛼1, s1)
(𝛼2, s2)

s

Lagrange coefficients depend on 𝒫’

Δi  = ∏ 𝛼j/(𝛼j - 𝛼i)
𝒫’

T

j=1
j≠i

(𝛼1, s1)
(𝛼2, s2)
(𝛼3, s3)



Setup Key-operation

Approach 1: Share Re-sharing + Two-steps Key-operations
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SecKeyGen

SecKeyGen

SecKeyGen

s1

s2

s3

ShareT=2

ShareT=2

ShareT=2

s1

s2

s3

s1

s3

Combine s2

s2,1

s2,3

KeyOp

s1

s3

… a sa + e

s2,1

s2,3

Asharov et al. proposed a share re-sharing scheme with two-steps key-operations [AJLT+12].

Pros
❏ No constraints on the field K
❏ No need for trusted dealers

Cons
❏ Non-compact
❏ Leaks the failing parties’ shares

✔
✔

✘
✘



Setup Key-operation

Approach 2: Single-step Key-operation 
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s1

s2

s3

…

KeyOp
Combine s KeyOp

s1

s3

aSecKeyGen s ShareT=2��

Boneh et al. proposed a non-leaky approach based on a special sharing scheme ({0,1}-LSSS) [BGGJ+18].

as+e



Setup Key-operation

Approach 2: Single-step Key-operation 
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s1

s2

s3

…ShareT=2

b1 = s1 a + e1 

b3 = s3 a + e3

 ∑Δi bia  =   sa+ ∑Δi ei   
 ≈   sa

𝒫’ 𝒫’

Boneh et al. proposed a non-leaky approach based on a special sharing scheme ({0,1}-LSSS) [BGGJ+18].

SecKeyGen s��

✔
Pros
❏ Protects the failing parties’ shares

Cons
❏ Non-compact (O(N4.2))
❏ Requires a trusted dealer

✔ ✘
✘

T

i=1

T

i=1



Setup Key-operation

Our Approach – Intuition
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…

b1 = Δ1s1 a + e1 

b3 = Δ3s3 a + e3

 ∑bia  =   sa+ ∑ei   
 ≈   sa

𝒫’

𝒫’

𝒫’

[MBH23]: If the parties know the set of online parties 𝒫’ before computing their shares, there is a neat trick. 

s1

s2

s3

ShareT=2SecKeyGen s��
T

i=1

T

i=1



Setup

Our Approach: Share Re-Sharing + Optimistic Key-operation
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SecKeyGen

SecKeyGen

SecKeyGen

s1

s2

s3

ShareT=2

ShareT=2

ShareT=2

s’1

s’2

s’3

…

This trick combined with the share re-sharing approach yields an highly efficient solution. [MBH23]

Pros
❏ Protects the failing parties’ shares
❏ No trusted dealer
❏ Compact and efficient

✔
✔
✔

Key-operation

b1 = Δ1s1 a + e1 

b3 = Δ2s3 a + e3

a

𝒫’

𝒫’

𝒫’

 ∑bi  =   sa+ ∑ei   
 ≈   sa

T

i=1

T

i=1



s  =  ∑si = ∑∑Δjsi,j =    ∑∑Δjsi,j =    ∑Δj  ∑si,j =    ∑sj

Our Approach: Properties 
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T-out-of-T additive sharing of the 
collective secret-key.

Modularity

We can use the protocols of the 
N-out-of-N scheme for N=T.

Sum-over-N terms do not depend 

on the set of online parties 𝒫’. 

Compactness

T-out-of-N re-shares can be 
aggregated in the setup phase.

Sum-over-T terms contains 
re-shares held by party j only.

Non-leakyness / Correctness

The each party can compute its 

share locally given 𝒫’.

𝒫’ 𝒫’ 𝒫’

Let:
s= ∑si be the ideal secret-key in the N-out-of-N scheme

si,j = Si(𝛼j) be the re-share of si held by party j in the T-out-of-N scheme

Then, for any 𝒫’ ⊂ 𝒫, |𝒫’| ≥ T, we can express S as:

N

𝒫’
N

i=1

N

i=1

T

j=1

N

i=1

T

j=1

N

i=1

T

j=1

T

j=1



Our Approach: Discussion

The dependence on the online parties’ oracle introduces two requirements:
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1. Implementation of the oracle

● Good 𝒫’ requires accurate view over the network
● Requires consensus on the participant set 𝒫’

2. A protocol-failure handling mechanism

● Parties can fail *after* 𝒫’ was issued.
● Requires defining a (synchronous) “protocol failure” event.

Upside: Req. 1. + 2. can be realized in the 
passive, synchronous setting. So our scheme 
is highly relevant in this setting.

Approach Trusted dealer Leaky Compact Asynchronous

Two-step [AJLT+12] No Yes No No

Single-step [BGGJ+18] Yes No No yes

Ours [MBH23] No No Yes No

Downside: our method 
does not “directly” apply 
to stronger settings.



Implementation

Both the N-out-of-N- and the T-out-of-N-threshold scheme are implemented in Lattigo  [MBTH20]
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https://github.com/tuneinsight/lattigo

Full suite of unit-test and benchmarks 

Open-source (Apache 2.0 licence)

Standalone, modular math & crypto layers 

100% written in Go(Single-party) CKKS bootstrapping

Supports: (Threshold-) BGV, BFV, CKKS

https://github.com/tuneinsight/lattigo


Fault-tolerant MHE-based MPC Protocol
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    Setup                    Compute

Encrypt

Encrypt

Encrypt

Eval

x1

x2

x3

evk
s1

s2

s3

s1

s2

s3

cpk y
☁ ☁ ☁ 

PKG.GenShare

PKG.AggShares DEC.AggShares

DEC.GenShare

DEC.GenShare

DEC.GenShare

PKG.GenShare

PKG.GenShare

Lattigo & OpenFHE provide the core element of the MHE-based MPC protocol… 



…, but the way to practice is full of challenges.

Practical Challenges of MHE-based MPC
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I. Systematization
- Reusable setup
- Parallel phases 

II. Lightweight clients support
- Large round share
- HE circuit evaluation

III. Churn resilience
- Liveness 
- Security

0. MHE Schemes
- Constructions
- Implementation

Practical and 
Deployable MPC 
Solution 

✔

→ MHE Sessions
→ PAT Protocols 

→ Non-monolithic execution
→ Helper-assisted evaluation

→ Helper-assisted coordination
→ Secure protocol retries

[MCPT24]



Helium: Systematization

MHE-MPC reduces to running many Public Aggregatable Transcript (PAT) protocols within a session.
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s1

s2

s3

sig.GenShare

sig.AggShares
sig.GenShare

sig.GenShare

a

psig := (ptype, pargs)
ptype ∈ {CKG, EKG, DEC, KS}
pargs: free protocols arguments 

- operation identifier for EKG
- ciphertext identifier for DEC/KS

(psig=sig, ppart=𝒫’, paggr=cloud)

𝒫’

𝒫’

𝒫’

pdesc := (psig, ppart, paggr)

ppart = 𝒫’ ⊂ 𝒫, |𝒫’| = T

paggr: aggregator’s network identity

PAT-protocol “mini-language”:



Helium: Helper coordination
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s1

s2

s3

sig.GenShare

sig.AggShares

a

sig.GenShare

(desc1, started)

(desc1, completed)

…

𝒫’

𝒫’

a

coordmsg := (pdesc, pstatus)
pstatus ∈ {started, completed}

coordlog := coordmsg || coordlog

sig, 𝒫’ ← desc1 

aggOut

aggOutsig.Finalizeout

Helper orchestrates the execution via a compact public coordination log.

a

a ← get(sig) 



Helium: Non-monolithic execution
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s1

s2

s3

evk

PKG.GenShare

PKG.AggSharesPKG.GenShare

PKG.GenShare

cpk

Monolithic Setup            Non-monolithic Setup

s1

s2

s3

cpk
evkmulevkrot1evkrot2

● Potentially large round-1 message
● Round can fail in the T-out-of-N Setting
● Cannot distribute the load if Nonline > T
● No need for coordination: 1-2 round
● Matches the theoretical formulation

CRS CRS

● Small messages: support weak nodes
● Dynamic Participant sets: adapt to network
● Enables distribution of the load
● Requires (finer grained) coordination
● Execution no longer match model of security proof

PKG = 
CKG⚬EKGmul⚬EKGrot1⚬EKGrot2⚬…



𝒞

Game 𝒢b

Helium: Modelling the Non-Monolithic Execution

Modelling the protocol execution mechanism as an interactive game (keygen case).
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𝒜𝒞
s, crs ← session(sid)

if b == 0:
    a←crs(sig)
    h←sig.GenShare(s, a, 𝒫i)
else:
    h← U(R)

(sid, sig1, 𝒫1)

h1

b’

(sid, sig2, 𝒫2)

h2

● Security from RLWE assumption

sig.GenShare(s, a, 𝒫) ~ Δ sa + e 𝒫

→ holds if 𝒜 can only query a poly. number of 
indep. samples

→ a, e must be fresh

→ a is read from the CRS



𝒞

Game 𝒢b

Helium: Modelling the Non-Monolithic Execution

A non-monolithic, adaptive execution requires a random-access CRS
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𝒜𝒞
s, crs ← session(sid)

if b == 0:
    a←crs(crs, sig)
    h←sig.GenShare(s, a, 𝒫i)
else:
    h← U(R)

(sid, sig1, 𝒫1)

h1

b’

(sid, sig2, 𝒫2)

h2

● a must be read fresh from the CRS for each sig.

● Not all parties participate to all protocols (or are 
even online) → Need a random-access CRS
 

● “Branching” the base CRS for each signature:

crs(crs, sig) := xof(crs||sig)

Unique signatures → fresh public polynomials



Helium: Helper coordination – Retries
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s1

s2

sig.GenShare

sig.AggShares

a

sig.GenShare

(desc1, started)

(desc1’, started)

…

𝒫’

𝒫’

sig, 𝒫’’ ← desc1’ 

aggOut

a

s3

…

sig.GenShare
𝒫’’a

sig, 𝒫’ ← desc1 

sig.GenShare
𝒫’’

desc1.sig = desc1’.sig
desc1.ppart ≠ desc1’.ppart

The PAT protocol semantic and non-monolithic execution provides a natural retry mechanism.

+ Minimal extra logic for retries

- Protocol failures require providing the 
challenger with more freedom. 



Game 𝒢b

Helium: Modelling the Non-Monolithic Execution

Retries allow repeated signatures with different participant sets.
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𝒜𝒞
s, crs ← session(sid)

if b == 0:
    a←crs(crs, sig)
    h←sig.GenShare(s, a, 𝒫i)
else:
    h← U(R)

(sid, sig1, 𝒫1)

h1

b’

(sid, sig1, 𝒫2)

● CRS-sampled polynomials are no longer fresh

(h1, h2, a)=(Δ  sa + e1 , Δ  sa + e2, a)   ≡    U(R3)

h2
crs(crs, sig, 𝒫i)

c𝒫1 𝒫2

● “Branching” the base CRS for each protocols:

crs(crs, sig, 𝒫):= xof(crs||sig||H(𝒫))

Unique protocol descriptor → fresh public polynomials



𝒞
s, crs ← session(sid)

if b == 0:
    a←crs(crs, sig, 𝒫i)
    h←sig.GenShare(s, a, 𝒫i)
else:
    h← U(R)

Game 𝒢b

Helium: Modelling the Non-Monolithic Execution

Retries allow repeated signatures with same participant sets:
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𝒜𝒞
s, srs, crs ← session(sid)

if b == 0:
    a←crs(crs, sig, 𝒫)
    e←error(srs, sig, 𝒫)
    h←sig.GenShare(s, a, 𝒫i;e)
else:
    h← U(R)   (with “bookkeeping”)

(sid, sig, 𝒫)

h1

b’

(sid, sig, 𝒫)

h2

● Can happen in passive adv. setting:
1. The network state at retry time.
2. Stateless node restart.

(h1, h2, a)=(Δ sa + e1 , Δ sa + e2, a)   ≡    U(R3)c𝒫 𝒫

● Bad solution: retry sequence numbers
→ Does not prevent case 2 failure.

● Better solution: resettable PAT protocols
→ By seeding the error distribution

→ Ensure 𝒞 behaves like a random function



Practical Challenges of MHE-based MPC
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I. Systematization
- Sessions
- PAT protocol abstraction 

II. Lightweight clients support
- Non-Monolithic Execution
- O(1) participant overhead

III. Churn resilience
- Retries
- Resettability 

0. MHE Schemes
- Construction
- Implementation

Practical and 
Deployable MPC 
Solution 

✔ ✔

✔

✔



Implementation

We implemented Helium as an open-source library.
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https://github.com/ChristianMct/helium

https://github.com/ChristianMct/helium


Conclusion: My “FHE:IDEA”
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Hot take: In the short/medium term, future deployments of FHE will be solving SMPC problems.

Secure Multiparty Computation 
Problem

x1 x2

x3

f(x1, x2, x3) = y
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