
Multiparty Homomorphic Encryption:
from Theory to Practice

Christian Mouchet, HPI

@ FHE:IDEAs Workshop
25.05.2024

Secure Multiparty Computation
Problem

“MPC Protocol”

Secure Multiparty Computation

2

[Input privacy]
“Without revealing more information
about the inputs than what y does”

[Functionality]
“Output y”

Multiple parties want to compute a public function without disclosing their inputs.

x1 x2

x3

Garbling-based
[Yao86][GMW87][BMR90]...

Linear Secret-Sharing-based
[Bea91][DPSZ+12][KOS16]...MHE

f(x1, x2, x3) = y

𝒫
❖ N parties

𝒜⊂𝒫
❖ N-1 adversaries
❖ Passive and static

Multiparty Homomorphic Encryption – Intuition

MHE.Encrypt

MHE.Encrypt

MHE.Encrypt Enc(x3) 3

x1

x2

x3

 y

Multiparty Homomorphic Encryption (MHE) extends Homomorphic Encryption (HE) with an access-structure.

Enc(x2)

Enc(x1)

Enc(y)MHE.KeyGen MHE.Decrypt
MHE.Eval

y= f(x1,x2,x3)

KeyGen DecryptEncrypt EvalMHE =

MHE Scheme HE Semantic Security + AS
⇓

Input Privacy

Correctness
⇓

FunctionalityMHE-based MPC Protocol

sk1 sk2 sk3 sk1 sk2 sk3

sk1

sk2

sk3

sk1

sk2

sk3

Multiparty Homomorphic Encryption – Two Main Families

4

There are two main families of MHE schemes.

Multiparty Homomorphic Encryption

Multi-key Homomorphic Encryption
[LTV12][MW16][CDKS19]

Threshold Homomorphic Encryption
[CD10][AJLT+12][GLS16][MBH23]…

MHE with dynamic access structure
+ Parties can join the computation “on-the-fly”
- Non-compact ciphertext and public keys

MHE with static access structure
- Fixed group keygen before inputs
+ Compact ciphertext and keys

MKHE.Eval ThHE.EvalEnc{sk1}(x1)

Enc{sk2}(x2)
Enc{sk1, sk2}(f(x1,x2))

Enctsk(x1)

Enctsk(x2)
Enctsk(f(x1,x2))

Multiparty Homomorphic Encryption – Two Orthogonal Families

5

There are two main families of MHE schemes.

Multiparty Homomorphic Encryption

Multi-key Homomorphic Encryption
[LTV12][MW16][CDKS19]

Threshold Homomorphic Encryption
[CD10][AJLT+12][GLS16][MBH23]…

MHE with dynamic secret-key access structure MHE with static secret-key access structure

Multi-group Homomorphic Encryption
[KLSW24]

MHE with dynamic, fixed-groups access-structure

 Setup Phase Compute Phase

MHE-based MPC (Threshold-FHE case)

☁

Encryptcp
k

Encryptcp
k

Encryptcp
k

Evalevk
EncKeyGen

Decrypt

EncS(x3
)

6

x1

x2

x3

EncS(x2
)

EncS(x1
)

EncS(y)

s1

s2

s3

s1

s2

s3

EvalKeyGen& y

s = Combine(s1, s2 ,
s3)

N-out-of-N-threshold: s = s1+ s2 + s3

T-out-of-N-threshold: s = Δ1s1+ Δ2s2

SecKeyGen

evks

cpks

Background: Ring learning-with-error [LPR10]

RLWE distribution:
Let:

R= ℤq[X]/(Xn+1) be a ring of degree n-1 polynomials with coefficients mod q,

U(R) be the uniform distribution over R,

Err(R) be an error distribution over R (||e|| << q, e ← Err(R)),

s ∈ R be a secret value in R

the ring learning-with-error distribution over s is defined as:
RLWEs := (sa + e, a) a ← U(R) e ← Err(R)

7

RLWEs ≡ U(R2)c
Given a polynomial number of independent samples from the RLWEs

 distribution:
- Search: find s.
- Decision: distinguish from U(R2)

A simplified RLWE-based HE scheme.

Let f: R→ R, and ||s|| = 1

Background: (Symmetric) HE From RLWE

8

HE.SymEncrypt HE.Eval HE.Decryptm

f

m’≅ f(m)ct ct’
∈ R ∈ R2ct = (c0, c1)

 = (m, 0) – RLWEs
 = (m - (sa + e), a)

m’ = c’0+sc’1
 = m’ - (sa + e’)+sa

Scheme’s operations are affine functions of the secret-key.

Secret-key operations are affine functions of the secret key

Other operations are also affine functions of the secret-key: sa + e + x

9

Compute phase:

Decrypt: sc1 + e + c0

Re-encrypt: ((s-s’)c1 + e + c0, c1)

Setup phase:

Public Encryption Key Generation: (sa + e, a)

Public Rotation Key Generation for rotk(∙) : (sb + e + rot-k(s)w, b)

Public Relinearization Key Generation: (sd + e + s2w, d)

Ideal Real

MHE Scheme Construction – Secret-key Operations

Affine secret-key operations can be implemented as single-round protocols (Generalizing [AJLT+12][MTBH+21]).

10

KeyOp sa+e ≈ sa

s1

s2

s3

a

GenShare
b1 = s1a

GenShare

☁

GenShare
AggShares

b2 = s2a

b3 = s3a

a ∑bi = sa

s = ∑si

 + e1

 + e2

 + e3

+ ∑ei ≈ sa

N

i=1

N

i=1

N

i=1

→ We refer to these protocols as having Public Aggregatable Transcripts (PAT)

Helper-Assisted, MHE-based MPC

11

Setup Compute

Encrypt

Encrypt

Encrypt

Eval

x1

x2

x3

evk
s1

s2

s3

s1

s2

s3

Public Transcript
✓ Delegated public share aggregation
✓ Sublinear MPC

cpk y

PKG.GenShare

PKG.AggShares DEC.AggShares

DEC.GenShare

DEC.GenShare

DEC.GenShare

☁ ☁ ☁
PKG.GenShare

PKG.GenShare

Delegated evaluation
✓ In classic passive-adversary setting

Low communication complexity
✓ 2+2 rounds
✓ Non-interactive Eval

One-time setup
✓ Amortizable cost
✓ Session-like paradigm

The MHE-based MPC protocol has many practical advantages. [MTBH+21]

Setup Compute

Helper-Assisted, MHE-based MPC

12

Encrypt

Encrypt

Encrypt

Eval

x1

x2

x3

evk
s1

s2

s3

s1

s2

s3

cpk EncRec(y)

☁ ☁ ☁

Practicality Enhancements [MTBH21]

PKG.GenShare

PKG.AggShares KS.AggShares

KS.GenShare

KS.GenShare

KS.GenShare

PKG.GenShare

PKG.GenShare

✓ Refresh protocol
○ Interactive “bootstrapping”
○ Single-round

✓ Proxy-reencryption to design. receiver
○ DEC → (P)KS
○ Internal & External (given pk)

✓ Switching to/from data-level SS
○ Single-round

Setup Compute

Helper-Assisted, MHE-based MPC

13

Encrypt

Encrypt

Encrypt

Eval

x1

x2

x3

evk
s1

s2

s3

s1

s2

s3

cpk y
☁ ☁ ☁

Fault-tolerance ?
● Temporary disconnects & Reboots
● Full crashes

“Bad”
● … but “by design” when |𝒜| = N-1
→ What about |𝒜| < T ?

PKG.GenShare

PKG.AggShares DEC.AggShares

DEC.GenShare

DEC.GenShare

DEC.GenShare

PKG.GenShare

PKG.GenShare

“Not that bad”
● Most of the protocol state is public
● Delays the result

Ideal Real

T-out-of-N-Threshold Secret-Key Operations ?

Running PAT protocols among T < N parties.

14

KeyOp as+e ≈ as

s1

s2

s3

a

b1 = ???

b2 = ???

b3 = ???

a ??? ≈ sa

Previous Approaches

Previous approaches either require a trusted dealer or are leaky (and are all non-compact)

15

Approach Trusted dealer Leaky Non-Compact

1. Two-step [AJLT+12] No Yes Yes

2. Single-step [BGGJ+18] Yes No Yes

Ours [MBH23] No No No

Compromises the secret-keys of offline parties
→ Compromises the “session”.

Requiring non-constant-size secrets
→ Leads to costly storage & ops.

Combine
s = S(0) = ∑Δi si

Shamir Secret-Sharing Scheme Reminder [Shamir 1979]

Shares are points on a uniformly random polynomial S over some finite field K where:
- S has degree-(T-1) and
- s = S(0).

The secret reconstruction is a linear combination of the shares with the Lagrange interpolation coefficients:

For 𝒫’ ⊂ 𝒫 |𝒫’| ≥ T (w.l.o.g. assume 𝒫’ = {P1, P2, …, PT}):

16
𝒫’T

i=1

ShareT

 S ← U(K[X])

S(𝛼1)
S(𝛼2)
S(𝛼3)

s

(𝛼1, s1)
(𝛼2, s2)

s

Lagrange coefficients depend on 𝒫’

Δi = ∏ 𝛼j/(𝛼j - 𝛼i)
𝒫’

T

j=1
j≠i

(𝛼1, s1)
(𝛼2, s2)
(𝛼3, s3)

Setup Key-operation

Approach 1: Share Re-sharing + Two-steps Key-operations

17

SecKeyGen

SecKeyGen

SecKeyGen

s1

s2

s3

ShareT=2

ShareT=2

ShareT=2

s1

s2

s3

s1

s3

Combine s2

s2,1

s2,3

KeyOp

s1

s3

… a sa + e

s2,1

s2,3

Asharov et al. proposed a share re-sharing scheme with two-steps key-operations [AJLT+12].

Pros
❏ No constraints on the field K
❏ No need for trusted dealers

Cons
❏ Non-compact
❏ Leaks the failing parties’ shares

✔
✔

✘
✘

Setup Key-operation

Approach 2: Single-step Key-operation

18

s1

s2

s3

…

KeyOp
Combine s KeyOp

s1

s3

aSecKeyGen s ShareT=2��

Boneh et al. proposed a non-leaky approach based on a special sharing scheme ({0,1}-LSSS) [BGGJ+18].

as+e

Setup Key-operation

Approach 2: Single-step Key-operation

19

s1

s2

s3

…ShareT=2

b1 = s1 a + e1

b3 = s3 a + e3

 ∑Δi bia = sa+ ∑Δi ei
 ≈ sa

𝒫’ 𝒫’

Boneh et al. proposed a non-leaky approach based on a special sharing scheme ({0,1}-LSSS) [BGGJ+18].

SecKeyGen s��

✔
Pros
❏ Protects the failing parties’ shares

Cons
❏ Non-compact (O(N4.2))
❏ Requires a trusted dealer

✔ ✘
✘

T

i=1

T

i=1

Setup Key-operation

Our Approach – Intuition

20

…

b1 = Δ1s1 a + e1

b3 = Δ3s3 a + e3

 ∑bia = sa+ ∑ei
 ≈ sa

𝒫’

𝒫’

𝒫’

[MBH23]: If the parties know the set of online parties 𝒫’ before computing their shares, there is a neat trick.

s1

s2

s3

ShareT=2SecKeyGen s��
T

i=1

T

i=1

Setup

Our Approach: Share Re-Sharing + Optimistic Key-operation

21

SecKeyGen

SecKeyGen

SecKeyGen

s1

s2

s3

ShareT=2

ShareT=2

ShareT=2

s’1

s’2

s’3

…

This trick combined with the share re-sharing approach yields an highly efficient solution. [MBH23]

Pros
❏ Protects the failing parties’ shares
❏ No trusted dealer
❏ Compact and efficient

✔
✔
✔

Key-operation

b1 = Δ1s1 a + e1

b3 = Δ2s3 a + e3

a

𝒫’

𝒫’

𝒫’

 ∑bi = sa+ ∑ei
 ≈ sa

T

i=1

T

i=1

s = ∑si = ∑∑Δjsi,j = ∑∑Δjsi,j = ∑Δj ∑si,j = ∑sj

Our Approach: Properties

22

T-out-of-T additive sharing of the
collective secret-key.

Modularity

We can use the protocols of the
N-out-of-N scheme for N=T.

Sum-over-N terms do not depend

on the set of online parties 𝒫’.

Compactness

T-out-of-N re-shares can be
aggregated in the setup phase.

Sum-over-T terms contains
re-shares held by party j only.

Non-leakyness / Correctness

The each party can compute its

share locally given 𝒫’.

𝒫’ 𝒫’ 𝒫’

Let:
s= ∑si be the ideal secret-key in the N-out-of-N scheme

si,j = Si(𝛼j) be the re-share of si held by party j in the T-out-of-N scheme

Then, for any 𝒫’ ⊂ 𝒫, |𝒫’| ≥ T, we can express S as:

N

𝒫’
N

i=1

N

i=1

T

j=1

N

i=1

T

j=1

N

i=1

T

j=1

T

j=1

Our Approach: Discussion

The dependence on the online parties’ oracle introduces two requirements:

23

1. Implementation of the oracle

● Good 𝒫’ requires accurate view over the network
● Requires consensus on the participant set 𝒫’

2. A protocol-failure handling mechanism

● Parties can fail *after* 𝒫’ was issued.
● Requires defining a (synchronous) “protocol failure” event.

Upside: Req. 1. + 2. can be realized in the
passive, synchronous setting. So our scheme
is highly relevant in this setting.

Approach Trusted dealer Leaky Compact Asynchronous

Two-step [AJLT+12] No Yes No No

Single-step [BGGJ+18] Yes No No yes

Ours [MBH23] No No Yes No

Downside: our method
does not “directly” apply
to stronger settings.

Implementation

Both the N-out-of-N- and the T-out-of-N-threshold scheme are implemented in Lattigo [MBTH20]

24

https://github.com/tuneinsight/lattigo

Full suite of unit-test and benchmarks

Open-source (Apache 2.0 licence)

Standalone, modular math & crypto layers

100% written in Go(Single-party) CKKS bootstrapping

Supports: (Threshold-) BGV, BFV, CKKS

https://github.com/tuneinsight/lattigo

Fault-tolerant MHE-based MPC Protocol

25

 Setup Compute

Encrypt

Encrypt

Encrypt

Eval

x1

x2

x3

evk
s1

s2

s3

s1

s2

s3

cpk y
☁ ☁ ☁

PKG.GenShare

PKG.AggShares DEC.AggShares

DEC.GenShare

DEC.GenShare

DEC.GenShare

PKG.GenShare

PKG.GenShare

Lattigo & OpenFHE provide the core element of the MHE-based MPC protocol…

…, but the way to practice is full of challenges.

Practical Challenges of MHE-based MPC

26

I. Systematization
- Reusable setup
- Parallel phases

II. Lightweight clients support
- Large round share
- HE circuit evaluation

III. Churn resilience
- Liveness
- Security

0. MHE Schemes
- Constructions
- Implementation

Practical and
Deployable MPC
Solution

✔

→ MHE Sessions
→ PAT Protocols

→ Non-monolithic execution
→ Helper-assisted evaluation

→ Helper-assisted coordination
→ Secure protocol retries

[MCPT24]

Helium: Systematization

MHE-MPC reduces to running many Public Aggregatable Transcript (PAT) protocols within a session.

27

s1

s2

s3

sig.GenShare

sig.AggShares
sig.GenShare

sig.GenShare

a

psig := (ptype, pargs)
ptype ∈ {CKG, EKG, DEC, KS}
pargs: free protocols arguments

- operation identifier for EKG
- ciphertext identifier for DEC/KS

(psig=sig, ppart=𝒫’, paggr=cloud)

𝒫’

𝒫’

𝒫’

pdesc := (psig, ppart, paggr)

ppart = 𝒫’ ⊂ 𝒫, |𝒫’| = T

paggr: aggregator’s network identity

PAT-protocol “mini-language”:

Helium: Helper coordination

28

s1

s2

s3

sig.GenShare

sig.AggShares

a

sig.GenShare

(desc1, started)

(desc1, completed)

…

𝒫’

𝒫’

a

coordmsg := (pdesc, pstatus)
pstatus ∈ {started, completed}

coordlog := coordmsg || coordlog

sig, 𝒫’ ← desc1

aggOut

aggOutsig.Finalizeout

Helper orchestrates the execution via a compact public coordination log.

a

a ← get(sig)

Helium: Non-monolithic execution

29

s1

s2

s3

evk

PKG.GenShare

PKG.AggSharesPKG.GenShare

PKG.GenShare

cpk

Monolithic Setup Non-monolithic Setup

s1

s2

s3

cpk
evkmulevkrot1evkrot2

● Potentially large round-1 message
● Round can fail in the T-out-of-N Setting
● Cannot distribute the load if Nonline > T
● No need for coordination: 1-2 round
● Matches the theoretical formulation

CRS CRS

● Small messages: support weak nodes
● Dynamic Participant sets: adapt to network
● Enables distribution of the load
● Requires (finer grained) coordination
● Execution no longer match model of security proof

PKG =
CKG⚬EKGmul⚬EKGrot1⚬EKGrot2⚬…

𝒞

Game 𝒢b

Helium: Modelling the Non-Monolithic Execution

Modelling the protocol execution mechanism as an interactive game (keygen case).

30

𝒜𝒞
s, crs ← session(sid)

if b == 0:
 a←crs(sig)
 h←sig.GenShare(s, a, 𝒫i)
else:
 h← U(R)

(sid, sig1, 𝒫1)

h1

b’

(sid, sig2, 𝒫2)

h2

● Security from RLWE assumption

sig.GenShare(s, a, 𝒫) ~ Δ sa + e 𝒫

→ holds if 𝒜 can only query a poly. number of
indep. samples

→ a, e must be fresh

→ a is read from the CRS

𝒞

Game 𝒢b

Helium: Modelling the Non-Monolithic Execution

A non-monolithic, adaptive execution requires a random-access CRS

31

𝒜𝒞
s, crs ← session(sid)

if b == 0:
 a←crs(crs, sig)
 h←sig.GenShare(s, a, 𝒫i)
else:
 h← U(R)

(sid, sig1, 𝒫1)

h1

b’

(sid, sig2, 𝒫2)

h2

● a must be read fresh from the CRS for each sig.

● Not all parties participate to all protocols (or are
even online) → Need a random-access CRS

● “Branching” the base CRS for each signature:

crs(crs, sig) := xof(crs||sig)

Unique signatures → fresh public polynomials

Helium: Helper coordination – Retries

32

s1

s2

sig.GenShare

sig.AggShares

a

sig.GenShare

(desc1, started)

(desc1’, started)

…

𝒫’

𝒫’

sig, 𝒫’’ ← desc1’

aggOut

a

s3

…

sig.GenShare
𝒫’’a

sig, 𝒫’ ← desc1

sig.GenShare
𝒫’’

desc1.sig = desc1’.sig
desc1.ppart ≠ desc1’.ppart

The PAT protocol semantic and non-monolithic execution provides a natural retry mechanism.

+ Minimal extra logic for retries

- Protocol failures require providing the
challenger with more freedom.

Game 𝒢b

Helium: Modelling the Non-Monolithic Execution

Retries allow repeated signatures with different participant sets.

33

𝒜𝒞
s, crs ← session(sid)

if b == 0:
 a←crs(crs, sig)
 h←sig.GenShare(s, a, 𝒫i)
else:
 h← U(R)

(sid, sig1, 𝒫1)

h1

b’

(sid, sig1, 𝒫2)

● CRS-sampled polynomials are no longer fresh

(h1, h2, a)=(Δ sa + e1 , Δ sa + e2, a) ≡ U(R3)

h2
crs(crs, sig, 𝒫i)

c𝒫1 𝒫2

● “Branching” the base CRS for each protocols:

crs(crs, sig, 𝒫):= xof(crs||sig||H(𝒫))

Unique protocol descriptor → fresh public polynomials

𝒞
s, crs ← session(sid)

if b == 0:
 a←crs(crs, sig, 𝒫i)
 h←sig.GenShare(s, a, 𝒫i)
else:
 h← U(R)

Game 𝒢b

Helium: Modelling the Non-Monolithic Execution

Retries allow repeated signatures with same participant sets:

34

𝒜𝒞
s, srs, crs ← session(sid)

if b == 0:
 a←crs(crs, sig, 𝒫)
 e←error(srs, sig, 𝒫)
 h←sig.GenShare(s, a, 𝒫i;e)
else:
 h← U(R) (with “bookkeeping”)

(sid, sig, 𝒫)

h1

b’

(sid, sig, 𝒫)

h2

● Can happen in passive adv. setting:
1. The network state at retry time.
2. Stateless node restart.

(h1, h2, a)=(Δ sa + e1 , Δ sa + e2, a) ≡ U(R3)c𝒫 𝒫

● Bad solution: retry sequence numbers
→ Does not prevent case 2 failure.

● Better solution: resettable PAT protocols
→ By seeding the error distribution

→ Ensure 𝒞 behaves like a random function

Practical Challenges of MHE-based MPC

35

I. Systematization
- Sessions
- PAT protocol abstraction

II. Lightweight clients support
- Non-Monolithic Execution
- O(1) participant overhead

III. Churn resilience
- Retries
- Resettability

0. MHE Schemes
- Construction
- Implementation

Practical and
Deployable MPC
Solution

✔ ✔

✔

✔

Implementation

We implemented Helium as an open-source library.

36

https://github.com/ChristianMct/helium

https://github.com/ChristianMct/helium

Conclusion: My “FHE:IDEA”

37

Hot take: In the short/medium term, future deployments of FHE will be solving SMPC problems.

Secure Multiparty Computation
Problem

x1 x2

x3

f(x1, x2, x3) = y

References

[AJLT+12] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs, “Multiparty
computation with low communication, computation and interaction via threshold FHE,” in Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Springer, 2012,
pp. 483–501.

[Bea91] Beaver, Donald. "Efficient multiparty protocols using circuit randomization." Advances in
Cryptology—CRYPTO’91: Proceedings 11. Springer Berlin Heidelberg, 1992.

[BGGJ+18] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M. Rasmussen, and A. Sahai,
“Threshold cryptosystems from threshold fully homomorphic encryption,” in Annual International
Cryptology Conference, Springer, 2018, pp. 565–596.

[BMR90] Beaver, Donald, Micali, Silvio; Rogaway, Phillip (1990). "The round complexity of secure
protocols". Proceedings of the twenty-second annual ACM symposium on Theory of computing - STOC
'90. pp. 503–513.

[CDKS19] Chen, Hao, et al. "Efficient multi-key homomorphic encryption with packed ciphertexts with
application to oblivious neural network inference." Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. 2019

[DSPZ12] Damgård, Ivan, et al. "Multiparty computation from somewhat homomorphic encryption."
Annual Cryptology Conference. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

[GLS15] Dov Gordon, S., Feng-Hao Liu, and Elaine Shi. "Constant-round MPC with fairness and
guarantee of output delivery." Advances in Cryptology--CRYPTO 2015: 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II 35. Springer Berlin
Heidelberg, 2015.

[GMW87] Goldreich, Oded, Micali, Silvio; Wigderson, Avi (1987). "How to play ANY mental game".
Proceedings of the nineteenth annual ACM conference on Theory of computing - STOC '87. pp.
218–229.

38

[KLSW24] Kwak, Hyesun, Dongwon Lee, Yongsoo Song, and Sameer Wagh. "A General Framework of
Homomorphic Encryption for Multiple Parties with Non-interactive Key-Aggregation." In International
Conference on Applied Cryptography and Network Security, pp. 403-430. Cham: Springer Nature
Switzerland, 2024.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2010. On Ideal Lattices and Learning with
Errors over Rings. In Advances in Cryptology–EUROCRYPT 2010: 29th Annual International Conference
on the Theory and Applications of Crypto- graphic Techniques, French Riviera, May 30-June 3, 2010,
Proceedings, Vol. 6110. Springer, 1.

[LTV12] Adriana Lòpez-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty computation on
the cloud via multikey fully homomorphic encryption. In Howard J. Karloff and Toniann Pitassi, editors,
Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY,
USA, May 19 - 22, 2012, pages 1219–1234. ACM, 2012.

[MBH23] Christian Mouchet, Elliott Bertrand, and Jean-Pierre Hubaux. 2023. An Efficient Threshold
Access-Structure for RLWE-Based Multiparty Homomorphic Encryption. Journal of Cryptology 36 (2023).

[MCPT23] Christian Mouchet, Sylvain Chatel, Apostolos Pyrgelis, Carmela Troncoso. 2023. Helium:
Scalable MPC among Lightweight Participants and under Churn, CCS2024 (To Appear)

[MTBH21] Christian Mouchet, Juan Troncoso-Pastoriza, Jean-Philippe Bossuat, and Jean- Pierre
Hubaux. 2021. Multiparty Homomorphic Encryption from Ring-Learning- with-Errors. Proceedings on
Privacy Enhancing Technologies 4 (2021), 291–311.

[MW16] Mukherjee, Pratyay, and Daniel Wichs. "Two round multiparty computation via multi-key FHE."
Advances in Cryptology–EUROCRYPT 2016: 35th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II 35.
Springer Berlin Heidelberg, 2016.

[Yao86] Yao, Andrew Chi-Chih (1986). "How to generate and exchange secrets". 27th Annual Symposium
on Foundations of Computer Science (SFCS 1986). pp. 162–167

